ASH Transceiver Software

Designer’s Guide

Updated 2002.08.07

Il

dash
Stamp

ASH Transceiver Software Designer’s Guide
1 Introduction

1.1 Why Not Just Use a UART?
1.2 The Radio Channel — Magic and Imperfect
1.2.1 Modeling a radio system
1.2.2 Data rate and bandwidth
1.2.3 Noise and interference
1.2.4 Indoor RF propagation
1.2.5 Regulatory considerations

2 Key Software Design Issues

2.1 Fail-Safe System Design

2.2 Message Encoding for Robust RF Transmission

2.3 Clock and Data Recovery
2.4 Communication Protocols
2.4.1 Digital command transmissions

2.4.2 Data transmissions using packet protocols

3 1C1000 “Radio UART”

3.1 IC1000 Description
3.2 1C1000 Application

4 Example Data Link Layer Protocol

4.1 Link Layer Protocol Source Code
4.2 Terminal Program Source

4.3 Variations and Options

4.4 Test Results

5 Source Code Listings

5.1 DK200A.ASM
5.2 VI10T30C.FRM
5.3 DKI110K.ASM
5.4 V110TO5SB.FRM

6 Revisions and Disclaimers

[FRIF M.

Drawings

Figure 1.2.1
Figure 1.2.2
Figure 1.2.3.1
Figure 1.2.3.2
Figure 1.2.3.3
Figure 1.2.3.4
Figure 1.2.3.5
Figure 2.2.1
Figure 2.2.2
Figure 2.4.1
Figure 3.2.1
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4

Radio System Model

Receiver Signal Processing

Noise Amplitude Probability Distribution

Signal Reception with No Noise

Signal Reception with Moderate Noise

Signal Reception with Heavy Noise

Reception with Heavy Noise (expanded scale)

Noise Reception with No Signal and No Threshold

Signal Reception with No Signal and Moderate Threshold
ASH Receiver Application Circuit — Keyloq Configuration
Typical IC1000 Application

ASH Transceiver Application Circuit — Low Data Rate OOK
Radio Board Modification Detail

Jumper Pin Detail

Packet and Byte Structure Details

[FRIF M.

1 Introduction

1.1 Why Can’t | Just Use a UART?

Why can’t I just use a UART and a couple of transistors to invert the TX and RX data
signals to and from your ASH transceiver and get my application on the air? Well, you
can if you don’t need maximum performance and you make the necessary provisions in
your software for the characteristics of radio communications. But, you are going to leave
a lot of performance on the table. A radio link is a type of communication channel, and it
has specific properties and characteristics, just as an ordinary phone line is another type
of communication channel with its own properties and characteristics. To get usable data
communications over your phone line, you place a modem between your PC’s UART and
the phone line. And to get good performance from your ASH radio link, you are going to
need to put something more than a couple of transistors between the UART and the trans-
ceiver.

1.2 The Radio Channel — Magic and Imperfect

Radio is magic. It allows commands, data, messages, voice, pictures and other informa-
tion to be conveyed with no physical or visible connection. A radio wave can penetrate
most materials, and it can get around most barriers it cannot directly penetrate. It is argu-
ably the most useful electronic communication channel so far discovered.

But from a software developer’s point of view, a radio channel has some aggravating
properties and characteristics. The good news is there are strategies for dealing with
them.

1.2.1 Modeling a radio system
Figure 1.2.1 is a block diagram of a radio system. The antenna on the transmitter
launches energy into the RF channel, and the antenna on the receiver retrieves some of

the energy and amplifies it back to a useful level. No big deal, right? Well its no small
deal either.

Radio System Model

Transmitter RF Channel Receiver

Figure 1.2.1

[FRIF M.

Receiver Signal Processing

Coupling capacitor size
determined by maximum

signal pulse width

Detector
> Low-Pass \ _| l_.
Filter Dgta Data Out
Slicer

Low-pass filter bandwidth +
determinded by minimum Threshold
signal pulse width and
threshold setting

Min Max
Pulse Width Pulse Width

Encoded Data Signal

Figure 1.2.2

1.2.2 Data rate and bandwidth

Figure 1.2.2 is a generic block diagram of an RF receiver. This is where most of the ac-
tion takes place in a radio communication system. There are two filters in this block dia-
gram that you need to know about before you start writing code. The low-pass filter
limits the rate that data can be sent through the radio system. And it also has a major im-
pact on the range of the system. As you probably guessed, there is a trade-off here. For a
fixed amount of transmitter power, you can transmit farther if you transmit at a lower
data rate. The coupling capacitor in the block diagram creates a high-pass filter (in other
words, your signal is AC coupled). You have to choose a data rate and use a data encod-
ing scheme that lets your information flow successfully through these two filters. And if
you get this right, these filters will greatly contribute to the overall performance of your
system.

It is best to think in terms of the most narrow pulse (or most narrow gap) in your encoded
signal, which must match the bandwidth of the low-pass filter, and the widest pulse in
your encoded signal (or the widest gap), which must correctly match the time constant
formed by the coupling capacitor and its associated circuitry. It is the minimum and max-
imum pulse widths (and gaps) in the encoded data that must be “in tune” with the filters
in the receiver — not the underlying data rate.

[FRIF M.

1.2.3 Noise and interference

Unlicensed radio regulations, such as FCC regulation 15.249, limit the amount of RF
power you can transmit to roughly 0.001% of the power dissipated in a 25 watt light bulb.
But you only need to capture about 0.00000002% of this transmitted power level to re-
ceive properly encoded data at 2000 bps under typical conditions. Using decent antennas
chest-high above the ground, this equates to more than one-eighth of a mile of range out-
doors and much farther if one or both ends of the system are elevated.

There is a limit on how weak an RF signal can get and still convey information. This
limit is due to electrical noise. One source of noise is everywhere present on the surface
of the earth and is due to thermally-generated random electrical voltages and currents.
Any device with electrical resistance becomes a source of this noise. Two other noise
contributors are important in RF communications — semiconductor noise and attenuation.
Semiconductor devices such as RF amplifiers contain noise generation mechanisms in
addition to resistive thermal noise. Also, any component that attenuates a signal and is a
thermal noise generator itself reduces the signal-to-noise ratio by the amount of the atten-
uation. An RF filter is an example of this type of component.

A signal transmitted through a radio system will be at its lowest power level when it
reaches the first amplifier stage in the receiver. The noise added to the signal at this point
places an upper limit on the signal-to-noise ratio that can be achieved by the receiver (for
a given low-pass filter bandwidth). A good antenna helps keep the signal-to-noise ratio
up by delivering more signal power. In addition, using a low-loss RF filter between the
antenna and the first amplifier helps keep the signal-to-noise ratio up by minimizing sig-
nal attenuation. Using RF IC technology with low inherent RF semiconductor noise mini-
mizes the amount of noise that is added to the signal beyond the ever-present resistive
thermal noise. And yes, there are software tricks to take maximum advantage of whatever
signal-to-noise ratio the hardware guys get for you.

Figure 1.2.3.1 shows the probability distribution, or histogram, of the noise voltage you
would see at the base-band output of the ASH transceiver (Rppr = 330 K). Notice that the
noise has a Gaussian probability distribution. About 70% of the time the noise voltage
will be between +9 mV, or one standard deviation. Occasionally, noise spikes will reach
+18 mV, or two standard deviations. On rare occasions, spikes will reach +27 mV, and
on very rare occasions noise spikes will reach £36 mV or more. So every now and then a
noise spike or “pop” will occur that is strong enough to corrupt even a strong received
signal. This characteristic of thermal noise (and thermal-like semiconductor noise) means
that no RF channel can be perfectly error free. You have to plan for data transmission er-
rors when designing your software.

From DC to frequencies much higher than RF, thermal noise exhibits a flat power spec-
trum. The power spectrum of semiconductor noise can also be considered flat across the
RF bandwidth of a typical receiver. If you halve the bandwidth of the low-pass filter in a
receiver, you halve the thermal noise power that comes through it. This is why you can
transmit longer distances at a lower data rate. It allows you to reduce the bandwidth of

[FRIF M.

Noise Amplitude Probability Distribution
0.4

0.3

0.2

0.1

-45 -36 -27 -18 -9 0 9 18 27 36 45

millivolts

Figure 1.2.3.1

the low-pass filter so less noise gets through. You can then successfully recover data
from a weaker received signal.

Lets go back and look at Figure 1.2.2 again. The job of the data slicer is to convert the
signal that comes through the low-pass filter and coupling capacitor back into a data
stream. And when everything is set up properly, the data slicer will output almost perfect
data from an input signal distorted with so much noise that it is hard to tell there is a sig-
nal there at all. For the time being, assume the threshold voltage to the data slicer is zero.
In this case, anytime the signal applied to the data slicer is zero volts or less, the data
slicer will output a logic 0. Anytime the signal is greater than zero volts, the data slicer
will output a logic 1. Through software techniques, you can assure that the signal reach-
ing the data slicer swings symmetrically about 0 volts. Noise spikes, either positive or
negative, that are slightly less than one half of the peak-to-peak voltage of the desired sig-
nal will not appear as spikes in the data output. The ability to recover almost perfect data
from a signal with a lot of added noise is one of the main reasons that digital has over-
taken analog as the primary format for transmitting information.

In the way of a preview, look at Figures 1.2.3.2, 1.2.3.3, 1.2.3.4 and 1.2.3.5, which are
simulations of a radio system with various amounts of noise added to the signal. The top
trace in Figure 1.2.3.2 is the signal seen at the input to the data slicer.

The horizontal line through this signal is the slicing level. Notice that the signal droops
down as it starts from left to right, so that is swinging symmetrically around the slicing
level by about the fifth vertical grid line. This is the transient response of the base-band
coupling capacitor, and its associated circuitry, as it starts blocking the DC component of
the received signal. The steady 1-0-1-0... bit pattern seen to the left of the fifth grid line
is a training preamble. It sets up the slicing symmetry. To the right of the fifth grid line
there is a 12 bit start symbol and then the encoded message bits, etc. You will notice that

[FRIF M.

z'€'T’) 8anbiy

——

-

eje Paian02dy alemyos
BERER M M M

Indino ejeq 1pA1909Y

MAAC AN TN

DWW UV UWUY LU0

induj _oumJnEou

9SION ON Yyim uondaosay |eubig

—

€'€°Z'1 8anbi4

:b

=

eje(PaI9aA02dYy dlem}jos

IndIno ejeq 1pAI929Y

] sinlm ‘I_L M j'ﬁj
Uy ud L U U U

Wl jﬁ | 33:
LUy L | U L

ATV T WY

]

Induj Jojesedwon

9SION 9jeJapo Yiim uondasay jeubis

y'€Z'1L aanbi4

—
—

e
=

eje(pato

_lj_li
U ooy L

I—LJJJJ;J
| 8y -

AODJDY BJem

E—

L

n

Hos

ndinQ ejeQq J9A1993Y

.
|
i

|

\y

g

indu

10jele

=

dwoq

8

9sIoN AAeaH yum uondasay |eubis

G'€'Z’) ainbiy

<

eje(] peIon0oday a1emyos

IndInQ ejeq 1eA1999Y

VM) ALd

)

—

GRURY

Induj Jojesedwo)

(sjeoas papuedxa)
asIoN AAeaH yum uondaosay

the signal has been “rounded off” so that the 1-0-1-0... bit sequences almost look sinusoi-
dal. This shaping effect is due to the low-pass filter. If you set the bandwidth of the filter
too low for a given data rate, it will start seriously reducing the amplitude of these
1-0-1-0... bit sequences and/or smearing them into each other.

The output of the data slicer is the middle trace, and the output of the software recovery
subroutine is the bottom trace. Notice that the bottom trace is shifted to the right one bit
period. This is because the software “studies” the receiver data output for a complete bit
period before estimating the bit value. It will soon become apparent why this is done.

Figure 1.2.3.3 shows the same signal with a moderate amount of noise added. You now
have to look at the top trace carefully to see the data pattern (look right at the slicing
level). The middle trace shows the output of the data slicer, which has recovered the data
accurately other than for some jitter in the width of the bits. The data recovered by the
software matches the middle trace again, shifted one bit period to the right.

Figure 1.2.3.4 shows the signal with heavy noise added. The data pattern has become
even more obscure in the top trace. With this much noise, the output from the data slicer
shows occasional errors. Note that the software subroutine has been able to overcome
these errors by deciding the most likely bit value at the end of each bit period. Figure
1.2.3.5 is a section of 1.2.3.4 on an expanded scale to show more bit-by-bit detail.

Interference is defined as an unwanted RF signal radiated by another system (RF or digi-
tal). Like noise, interference that is not too strong can be eliminated by the data slicer
and/or software subroutine. Of course, the data has to be encoded so that it swings sym-
metrically around the slicing level to get maximum noise and interference rejection.

1.2.4 Indoor RF propagation

It is intuitive that the farther away from a transmitter you get, the less power you can cap-
ture from it with your receiver. This is what you would see in free space, far away from
the ground and other physical objects. But on the ground, and especially indoors, you
will find that the signal strength varies up and down rapidly as the distance between the
transmitter and the receiver is steadily increased. The reason this happens is both good
news and bad news. It turns out that the radio waves from the transmitter antenna are tak-
ing many different paths to the receiver antenna. Radio waves strongly reflect off the
ground and off metal surfaces as light reflects off a mirror. And radio waves will also
partially reflect off non-metallic walls, etc. as light does off a window pane. The good
news is that all this bouncing around allows radio waves to diffuse around barriers they
cannot directly penetrate. The bad news is that all the bouncing around makes the RF
power you receive vary rapidly (flutter) as you move around and hit small reception
“dead spots”. You can even see reception flutter if you stand still and other people, vehi-
cles, etc. move nearby. Any radio system that operates near the ground (mobile phones,
wireless microphones, broadcast radios in cars, etc.) must deal with this multi-path flutter
problem. And yes, it is a consideration when you start writing your code.

[FRIF M.

12

Studies on indoor propagation show that you will find only a few spots in a room that
have really bad reception, and these severe “dead spots” tend to occupy a very small
space. Mild dead spots are far more common, and you will also find some places where
reception is especially good. As a rule of thumb, you need 100 times more transmitted
power indoors than in free space to get adequate reception at comparable distances. This
is called a 20 dB fading margin, and it provides about 99% coverage indoors. If you are
in a severe dead spot at UHF frequencies, moving just an inch or two gets you out of it.

When you look at a professional wireless microphone, you will notice that the base unit is
equipped with a “rabbit ear” antenna. Actually, there are two separate antennas and two
separate receivers in the wireless microphone base unit, with the antennas at right angles
to each other. This arrangement provides diversity reception, which greatly mitigates the
dead spot problem indoors. Since the paths between the two base station antennas and the
microphone are different, it is unlikely that the microphone will hit a dead spot for both
antennas at the same time. Mobile phone base stations also use diversity reception as do
many other radio systems, including a number of ASH transceiver systems.

1.2.5 Regulatory considerations

Systems based on ASH transceiver technology operate under various low power, unli-
censed UHF radio regulations. From a software point of view, the main differences in
these regulations are the maximum power you are allowed to transmit, and the allowed
transmitter duty cycle. European regulations (ETSI) allow the most transmitted power,
American regulations are in the middle, and Japan allows the least transmitted power. At
lower power levels, you have to transmit at a low data rate to get a useful amount of
range. At higher power levels you have more flexibility.

Duty cycle refers to the percentage of time each transmitter in your system can be on.
Some regulations, such as FCC 15.249 place no restrictions on duty cycle. Some bands in
Europe also have no current duty cycle limit - for example, the 433.92 MHz band. Other
bands in Europe do have a duty cycle limit. At 868.35 MHz, the duty cycle limit is 36
seconds in any 60 minute interval. Duty cycle requirements influence the choice of band
to operate in, and the design of your software. RFM’s web site has links to many radio
regulatory sites. Be sure to thoroughly familiarize yourself with the regulations in each
geographical market for your product. We have seen cases where a customer had to redo
a well-engineered system to accommodate a regulatory subtlety.

2 Key Software Design Issues
There are at least four key issues to consider in designing ASH transceiver software. You

may identify others depending on the specifics of your product’s application. It is worth
giving it some thought before you start designing your code.

[FRIF M.

13

2.1 Fail-Safe System Design

Most unlicensed UHF radio systems operate with few interference problems. However,
these systems operate on shared radio channels, so interference can occur at any time and
at any place. Products that incorporate unlicensed UHF radio technology must be de-
signed so that a loss of communications due to radio interference or any other reason
will not create a dangerous situation, damage equipment or property, or cause loss of
valuable data. The single most important consideration in designing a product that uses
unlicensed radio technology is safety.

2.2 Message Encoding for Robust RF Transmission

Look at Figure 1.2.2 again, and note the threshold input to the data slicer. When you set
the threshold voltage to a value greater than zero you move the slicing level up. This pro-
vides a noise squelching action. Compare Figures 2.2.1 and 2.2.2. In Figure 2.2.1, the
threshold is set to zero. With no signal present, noise is continuously present at the re-
ceiver data output, and at the output of the software data recovery routine. Software
downstream of the data recovery subroutine has to be able to distinguish between noise
and a desired signal. Figure 2.2.2 shows the effect of adding a moderate threshold. Notice
that just a few noise spikes appear at the receiver data output and no noise spikes come
out of the software data recovery routine (it could still happen occasionally). As we raise
the threshold more, even fewer noise spikes will appear at the receiver data output. Don’t
expect to eliminate all noise spikes — noise amplitude has that Gaussian probability distri-
bution we discussed earlier. Even using a very heavy threshold, you have to plan for
noise spikes now and then, as well as strong bursts of interference.

As you raise the threshold from zero, you reduce the receiver’s sensitivity to desired sig-
nals, and you make it more vulnerable to propagation flutter. If you need all the range and
system robustness possible, you will want to use little or no threshold. On the other hand,
using a threshold can reduce the amount of work your software has to do on data recov-
ery. This allows you to support a higher data rate with the same processing power, or re-
duce average processor current consumption in applications where this is critical. If you
decide to use an ordinary UART on the radio side, a strong threshold is a must. Also,
some remote control decoder chips will not tolerate much noise.

The ASH transceiver is equipped with two thresholds, DS1 and DS2. DS1 works basi-
cally as shown in Figures 1.2.2, 2.2.1, and 2.2.2. DS2 is used in conjunction with DS1
and its primary job is to support high data rate transmissions. The details on how to adjust
these thresholds are given in the ASH Transceiver Designer’s Guide, Sections 2.7.1 and
2.7.2.

Your message encoding strategy and several adjustments on the ASH transceiver depend
on whether you use a threshold, and on how strongly the threshold is set. Let’s start with
the “no threshold” case, which offers the best potential performance. Referring to Figure
1.2.3.2, we start the transmission with a 1-0-1-0... training preamble. This preamble
needs to be long enough to establish good signal slicing symmetry at the input to the

[FRIF M.

14

1'2°Z 8anbi4

=

[TR S

it

asIoN U@L>oomu"_ alem)jos

ndjnQ ejeq JaAI8o9)Yy

;
I

I
|

by

f,?

L

Iﬁ

;

_{_gé%g i Eéié

I
W

anduj

Il
mith

W

_SEJQEOQ

< i

ploysaJiyl oN pue [eubig oN Yjim uoindasay asioN

Z'zz 2Inbiy

asio

N U@LP>OOwu

My ©JeA

\}jos

n

dino ejeq JpAI09Y

2{3 N _\:

)

bttt (b bt A A s B A b b
TR AR U Ll 1

Eé

il

ploysaJy] ajesapoly pue [eubig oN Y3m uondasay asioN

comparator. The preamble is followed by a specific pattern of bits that will not occur any-
where else in the message. This pattern is often called a “sync vector”, and makes it pos-
sible to distinguish data from noise with high reliability (the sync vector is 12 bits in this
example). The balance of the message consists of encoded data and error detection bits.

The purpose of encoding your data is to maintain good slicing symmetry at the input to
the comparator. This is called DC-balanced encoding. Look at Figure 1.2.3.2 again. There
are five bit periods between each vertical grid line. Notice that you will not find more
than three 1 or 0 bits in a row in the data shown, and that there are always six ones and
six zeros in any sequence of 12 bits. This is because each message byte has been encoded
as 12 bits, always with six ones and six zeros, and with no more than four bits of the
same type in a row for any combination of adjacent encoded characters. This is one type
of coding that maintains good dynamic DC balance, and is similar to techniques used in
fiber-optic data transmissions. Another popular encoding scheme is Manchester encod-
ing, which encodes each 1 bit in the message as a 1-0 bit sequence, and each 0 bit in the
message as a 0-1 bit sequence. Both 12-bit encoding and Manchester encoding work
well. Manchester encoding has a maximum of two bits of the same type in a row, but re-
quires 16 bits to encode a byte. 12-bit encoding can have up to 4 bits of the same type in
a row, and requires, of course, 12 bits to encode a byte. By the way, your start vector
should also be dynamically DC balanced in most cases.

The data rate and the encoding scheme you use affects two adjustments on the ASH
transceiver (or vice versa). The most narrow pulse or gap in your encoded data sets the
low-pass filter bandwidth. For the two encoding schemes we have discussed, this is one
encoded bit period. Once you know the bit period, Section 2.5 in the ASH Transceiver
Designer’s Guide explains how to set the low-pass filter bandwidth. The widest pulse or
gap in your encoded data sets the value of the coupling capacitor. Once you know the
maximum number of 1 bits or 0 bits that can occur in a row, you know the width of the
maximum pulse or gap that can occur in your encoded data. Section 2.6 in the ASH
Transceiver Designer’s Guide explains how to determine the coupling capacitor value
and the required training preamble length from the maximum pulse or gap width.

Trying to send data without encoding is generally a disaster. Without a threshold, any
long sequence of 1’s or 0’s in your data will charge or discharge the coupling capacitor,
unbalancing the symmetry of the signal into the data slicer and ruining the noise rejection
performance.

When you use one of the data encoding schemes discussed above with no slicer thresh-
old, the coupling-capacitor transient response automatically adjusts the slicing symmetry
as variations occur in received signal strength. This greatly improves system robustness
to signal flutter. You usually want to make the coupling-capacitor value no larger than
needed, so that fast signal fluctuations can be followed.

Let’s now consider message encoding schemes and ASH transceiver adjustments when a
threshold is used. Again, a threshold trades-off sensitivity and flutter robustness for less
noise in the no-signal condition. If you are using a strong threshold, you may decide you

[FRIF M.

17

do not need a training preamble or start vector (this depends on the way you design your
code). But if you are using AGC and/or data slicer DS2 in your ASH transceiver, you will
need at least one 1-0-1-0... preamble byte for training these hardware functions. The
threshold in DS1 has a built-in hysteresis. When the input voltage to the data slicer ex-
ceeds the threshold level, DS1 will output a logic 1, and it will continue to output a logic
1 until the input voltage swings below zero. The DC-balanced data encoding methods al-
ready discussed work satisfactorily with the DS1 hysteresis. Again, once you know the
bit period of your encoded data, Section 2.5 in the ASH Transceiver Designer’s Guide
explains how to set the low-pass filter bandwidth. Note that a larger bandwidth is recom-
mended for the same bit period when a threshold is used. Using the coupling capacitor
value as determined in Section 2.6 of the ASH Transceiver Designer’s Guide is a good
default choice. When you use a threshold, 1 bits tend to drop out of weak and/or flutter-
ing signals at the data slicer. Message patterns that contain a few less 1 bits than 0 bits
work somewhat better with a strong threshold than classical DC-balanced codes. In some
cases you may work with encoder and decoder chips designed to send command codes.
Some of these chips send code messages with short preambles and relatively large gaps
between the messages. These chips often work better if you use a moderate threshold and
a relatively large coupling capacitor, so it is worth doing some experimenting.

2.3 Clock and Data Recovery

The clock and data recovery techniques used at the receiver are critical to overall system
performance. Even at moderate signal-to-noise ratios, the output of the data slicer will ex-
hibit some jitter in the position of the logic transitions. At lower signal-to-noise ratios, the
jitter will become more severe and spikes of noise will start to appear at the data slicer
output, as shown in Figurel.2.3.5. The better your clock and data recovery techniques can
handle edge jitter and occasional noise spikes, the more robust your radio link will be.
There is some good news about edge jitter due to Gaussian noise. The average position of
the logic transitions are in the same place as the noise-free case. This allows you to use a
phase-locked loop (PLL) that hones in on the average position of the data edges for clock
recovery. Once your clock recovery PLL is lined up, you can use the logic state at the
middle of each bit period, or the dominant logic state across each bit period as your re-
covered bit value. Testing mid-bit works best when the low-pass filter is well-matched to
the data rate. On the other hand, determining the dominant logic state across a bit period
can improve performance when the low-pass filter is not so well matched. The dominant
logic state is often determined using an “integrate and dump” algorithm, which is a type
of averaging filter itself.

It is possible to use simple data recovery techniques for less demanding applications
(close operating range so the signal-to-noise ratio is high). The standard protocol soft-
ware that comes in the DR1200-DK, DR1201-DK and DR1300-DK Virtual Wire® De-
velopment Kits uses a simplified data recovery technique to achieve air transmission rates
of 22.5 kbps with a modest microcontroller. And yes, ordinary UARTS are being used
successfully in non-demanding applications. But a word of caution. It appears the UARTSs
built into some microcontroller chips really don’t like even moderate edge jitter. If you

[FRIF M.

18

are considering using a built-in UART on the radio side, do some testing before you com-
mit your design to that direction.

About now you may be wondering if anybody builds an “RF UART”, which is designed
for low signal-to-noise ratio applications. The IC1000 discussed below is one example of
this concept.

2.4 Communication Protocols

So far, we have discussed message encoding techniques for robust RF data transmission,
and clock and data recovery techniques that can work with some noise-induced edge jitter
and occasional noise spikes. Even so, transmission errors and drop outs will occur. The
main job of your communication protocol is to achieve near-perfect communications over
an imperfect RF communication channel, or to alarm you when a communication prob-
lem occurs. And channel sharing is often another requirement.

A protocol is a set of standard structures and procedures for communicating digital infor-
mation. A complete protocol is often visualized as a stack of structures and procedures
that are very specific to the communication hardware and channel characteristics at the
bottom, and more general-purpose and/or application oriented at the top.

Packet-based protocols are widely used for digital RF communications (and for sending
data on many other types of communications channels.) Even simple command transmis-
sions usually employ a packet-style data structure.

2.4.1 Digital command transmissions

In addition to ASH transceivers, RFM’s second-generation ASH radio product line in-
cludes transmitter and receiver derivatives for one-way RF communications. Most
one-way command applications are actually two-way; RF in one direction and audible or
visual in the other direction. For example, you press the “open” button until you see the
garage door or gate start moving. The data encoding and data recovery techniques dis-
cussed above can be used to build a robust one-way RF communications system. But of-
ten, off-the-shelf command encoder and decoder ICs are used. Among the most popular
are the Microchip KeeLoq"™ ICs. Figure 2.4.1 shows RFM’s suggested application cir-
cuit for second-generation ASH receivers driving KeeLoq™™ decoders. You can usually
derive enough information from the data sheets of other encoder and decoder ICs to cal-
culate the component values to use with second-generation ASH receivers. The calcula-
tions are the same as discussed in the ASH Transceiver Designer’s Guide.

There is a growing trend to replace one-way RF communication links with two-way links
for added system integrity. This is especially true for one-way RF communication links
that are not activated by the user. Wireless home security systems are one example.

[FRIF M.

19

ASH Receiver Application Circuit

KeeLoq Configuration

+3
VDC
10 pF
+
'_“_0_%7
RIS 270k 1330 K 47K
A VA
19 |18 |17 e 15 |14 |13 |12
Lar GND CNT CONT VCC P P THLD THLD
3 RO RL1 2 WIDTH RATE 1 2
M 5] RFIO RREF [
TOP VIEW 100 K
ELESD p— GND1 GND2 [
VCC AGC PK BB CMP RX LPF
1 CAP DET OUT IN DATA NC ADJ
2 3 [4 5 6 7 [8 9
V V 0K
0.1 pF
+3 100 pF
VDC
Data Output

Figure 2.4.1

2.4.2 Data transmissions using packet protocols

A packet structure generally includes a training preamble, start symbol, routing informa-
tion (to/from, etc.) packet ID, all or part of a message, and error detection bits. Other in-
formation may be included depending on the protocol. Communications between nodes
in a packet-based system may be uncoordinated (talk when you want to) or coordinated
(talk only when it is your turn). In the case of uncoordinated transmissions, packet colli-
sions are possible. Theorists note that the collision problem limits the throughput of an
uncoordinated channel to about 18% of its steady one-way capacity. Coordinated trans-
missions have higher potential throughput but are more complex to code. Many applica-
tions that use ASH radio technology transmit relatively infrequently, so uncoordinated
transmissions work very successfully.

In both uncoordinated and coordinated systems, transmission errors can and will occur.
An acknowledgment (ACK) transmission back to the sending node is used to confirm
that the destination node has received the packet error free. Error-detection bits are added
to a packet so the destination node can determine if the packet was received accurately.
Simple parity checks or checksums are not considered strong enough for error checking
RF transmissions. The error-detection bits added to the end of a packet are often called a
frame check sequence (FCS). An FCS is usually 16 to 24 bits long, and is generated using
a cyclic redundancy code (CRC) method. IBM developed such a code many years ago for
their X.25 protocol and it is still widely used for RF packet transmissions. The ISO3309

[FRIF M.

20

Standard details the generation of this error detection code, and it is used in the protocol
code example below.

It is time to bring up the real challenge in designing and writing protocol software. Events
can happen in any sequence, and data coming into the protocol software can be corrupted
in any bit or in every bit (remember, short packets work best on a low signal-to-noise ra-
dio channel). It is worth doing a careful “what if”” study relevant to your protocol and
your application before doing the detailed design and coding of your software. Consider
how you can force unlikely sequences of events in your testing. Thorough front end plan-
ning can avoid a lot of downstream problems.

3 1C1000 “Radio UART”

RFM has introduced the IC1000 to support fast-track product development cycles using
ASH radio technology. The IC1000 implements the clock and data recovery tasks that of-
ten constitute a lot of the learning curve in your first RF protocol project. The IC1000 is
designed to operate with no threshold, which is the key to good system sensitivity.

3.1 1C1000 Description

The IC1000 is implemented in an industrial temperature range PIC12LC508 A-041\SN
microcontroller using internal clocking. Nominal operating current is 450 pA, consistent
with the low operating current emphasis of the second-generation ASH radio product
line. The IC1000 is provided in a miniature eight-pin SMT package.

3.2 1C1000 Application

A typical IC1000 application is shown in Figure 3.2.1. The data (slicer) output from the
second-generation ASH transceiver is buffered by an inverting buffer and is applied to
Pin 3 of the IC1000 and the Data In pin of the host microprocessor. When the IC1000 de-
tects the presence of a specific start-of-data pulse sequence, it outputs a Start Detect pulse
on Pin 2. This pulse is applied to an interrupt pin on the host processor. The IC1000 gen-
erates data clocking (data valid) pulses in the middle of each following bit period using
an oversampled clock extraction method. The IC1000 is designed to tolerate continuous
input noise while searching for a start-of-data pulse sequence.

The IC1000 supports four data rates - 2400, 4800, 9600, and 19200 bits per second (bps).
The data rate is selected by setting the logic input levels to Pin 6 (Speed 1) and Pin 7
(Speed 0). Please refer to the IC1000 data sheet for additional information.

4 Example Data Link Layer Protocol

The data link protocol discussed below is tuned for high-sensitivity, low data rate require-
ments. The protocol code is designed to run on the ATMEL AT89C2051 microcontroller
used in the DR1200-DK/DR1200A-DK Series Virtual Wire® Development Kits. The
“A” version kits (DR1200A-DK, etc.) ship with this software and require no hardware

[FRIF M.

21

Typical IC1000 Application

TX Modulation
TXMOD —AN Data Out
8.2K
; Speed 0
TR-Series + Speed 1 Host
ASH IC1000 6
. SOP Detect uP
Transceiver 47K 2 IRQ
RX Clock
3 5 Data Strobe
RXDATA
470K RX Data
Data In
MMBT2222
Figure 3.2.1

modifications. It is necessary to replace the radio boards used in the standard kits with
“A” version radio boards before using this code, or to modify the standard radio boards as
detailed below. Figure 4.1 shows the circuit modification used between the ASH trans-
ceiver base-band output, Pin 5, and the comparator (data-slicer) input, Pin 6. Figure 4.2
shows how these components are installed and their values. This modification reduces the

ASH Transceiver Application Circuit
Low Data Rate OOK

+3
CRFBZ VDC CDCB
{7—H 1 v
TR g Rt
Rew JRer
3
19 |13 17 |16 15 %4 13 |12
Lar GND CNT CNT VCC P P THLD THLD
3 RO RL1 2 WIDTH RATE 1 2
»—m 551 RFIO RREF
TOP VIEW
ELESD P GND1 GND2
VCC AGC PK BB CMP RX TX LPF
1 CAP DET OUT IN DATA MOD ADJ
2 3 J4 5 6 7 8 9
:7 §7 LIIN R
RFB | RBBO LPF
RTXM
Yy H
C

VDC

BBO

? Crei
C

Modulation Input

LPF

Figure 4.1

Data Output

[FRIF M.

22

.

) e

Figure 4.2

noise bandwidth of the receiver. In addition, R9 on the DR1200, DR1201 and DR1300
radio boards should be changed to a zero-ohm jumper (no DS1 threshold). R12 should be
changed to 330 K on all three radio boards. Note that the DR1200A, DR1201A and
DR1300A already incorporate these modifications.

4.1 Link Layer Protocol Source Code

The link layer protocol is implemented in 8051 assembly language and the source,
DK200A.ASM (RFM P/N SW0012.V01), is compatible with the popular TASM 3.01
shareware assembler. You can get TASM 3.01 at www.rehn.org/Y AMS51/files.shtml.

By the way, this “A” link layer protocol uses the programming pins differently than the
protocol supplied in the standard development kits. See Picture 4.3. Placing a jumper next
to the “dot” end (IDO0) enables the AutoSend mode (do this on one protocol board only).
Placing a jumper at the far end (ID3) strips the packet framing and header characters off

i -
5
Yo
“
b

Figure 4.3

[FRIF M.

23

received packets. This can be handy for driving small serial printers, etc. You do not use
jumpers to set the FROM address with this protocol.

Details of the packet and byte structures used by the protocol are shown in Figure 4.4.
The host-protocol packet structure begins and ends with a 0COH framing character
(FEND) that cannot be used elsewhere in the packet. For example, you cannot use 0COH
in the TO/FROM address byte. This will otherwise not be a problem using seven-bit
ASCII message characters. Eight-bit data can be sent using seven-bit ASCII characters to
represent numerical values, or a framing character substitution scheme like the one used
in the Internet SLIP protocol can be employed. The framing character helps deal with the
“non real time” nature of serial ports on your typical PC. The host-protocol packet struc-
ture within the frame includes the TO/FROM address byte, with the high nibble the TO
address and the low nibble the FROM address. The ID byte indicates which packet this
is. Each packet can hold up to 24 additional message bytes. As mentioned, short packets
should be used on radio channels.

Framing characters are not needed in the transmitted packet structure as the protocol is
real time on the radio side. The transmitted packet structure beings with a 1-0-1-0... pre-
amble which establishes good signal slicing symmetry at the input to the radio compara-
tor and then trains the clock and data recovery processes in the software. The preamble is
followed by a 12-bit start symbol that provides good discrimination to random noise pat-
terns. The number of bytes in the packet (beyond the start symbol), the TO/FROM ad-
dress, packet ID, message bytes and FCS then follow. The start symbol and all bytes
following are 12-bit encoded for good dynamic DC balance.

Packet and Byte Structure Details

Host-Protocol Packet Structure: | FEND | TO/FROM | ID | Message | FEND

Transmitted Packet Structure: Preamble | Start Symbol | # Bytes | TO/FROM | ID | Message | FCS

Host-Protocol ACK/NAK Structure: | FEND | TO/FROM | IDS | FEND

Transmitted ACK Structure: Preamble | Start Symbol | 69 | TO/FROM | ID | FCS
TO/FROM Byte Detail: TO Nibble | FROM Nibble
IDS Byte Detail: ACK/NAK Bit| 3 ID Bits | 4 Retry # Bits

Figure 4.4

24

[FRIF M.

ACK and NAK packets contain an IDS byte which is detailed in Figure 4.4. The most
significant bit in this byte is set to 1 for an ACK or 0 for a NAK. The next three bits are
the packet ID, and the lower nibble of the byte holds the retry number for the ACK.

On power up the program is initialized by a call to the se tup subroutine. The program
then begins running in the main loop. The t i ck subroutine is called every 104.18 mi-
croseconds through t_isr, the interrupt service routine for timer TO. The t i ck subrou-
tine always runs, and provides support for data reception, data transmission and event
timing. The t i ck subroutine has a number of operating modes, controlled by the state of
several flags.

Most of the time, t ick will call p L L, the receiver clock and data recovery subroutine.
The p L L subroutine uses two simple but effective signal processing techniques for accu-
rately recovering bits from a data input steam with edge jitter and occasional noise
spikes. The first signal processing technique is PLL clock alignment and the second tech-
nique is integrate-and-dump (I&D) bit estimation.

Register R2 acts as a modulo 0 to 159 ramp counter that wraps on overflow about every 8
sampling ticks, (one bit period). This provides an 500 microsecond bit period, which
equates to a nominal RF data rate of 2000 bits per second. Unless an edge occurs in the
incoming bit stream, the ramp is incremented by 12.5% on each tick. If an edge occurs
(change of logic state between ticks), the ramp is incremented 6.875% if the ramp value
is below 80, or is incremented 18.125% if the ramp value is equal to or greater than 80.
This causes the ramp period to gradually slide either backward or forward into alignment
with the average bit period of the incoming data. After alignment, the position of the
ramp can only change £5.625% on each incoming data edge. Moderate edge jitter and oc-
casional noise spikes will not seriously affect the ramp’s alignment with the incoming
data. Note that a preamble is needed to train the PLL (slide it into alignment).

Once the ramp is aligned, the I&D bit estimate becomes meaningful. The count in buffer
RXID is incremented on each tick within a bit period if input sample RXSMP is a logic 1.
At the end of the bit period (R2 overflow wrap), the incoming bit is estimated to be a 0 if
the count is four or less, or a 1 if the count is five or more. RXID is then cleared
(dumped) in preparation for the next bit estimate. Integrate-and-dump estimation pro-
vides additional noise filtering by effectively averaging the value of the input samples
within a bit period.

Once a bit value is determined, subroutine p L L either inputs it into a 12-bit buffer (lower
nibble of RXBH plus RXBL) used to detect the message start symbol, or adds it to buffer
RXBB, which collects six-bit half symbols from the incoming encoded message. Flag
SOPFLG controls which of these actions are taken.

You will notice that t i ck samples the RX input pin near the start of the subroutine, and
when transmitting, outputs a TX bit sample as one of the first tasks. This helps minimize
changes in the delay between timer TO activating t _isr and these input/output events.

If these activities are placed further down in the t i ck code or in the p L L subroutine, an

[FRIF M.

25

effect similar to adding extra noise-induced jitter can occur as different branches are
taken through the code.

In addition to supporting data reception and transmission, the t i ck subroutine runs
several timer functions. One timer provides a time-out for partial messages arriving from
the host. The AutoSend timer and the transmit retry timer are also part of the t i ck sub-
routine.

The other interrupt service routine used by the protocol software is s__isr, which sup-
ports serial port interrupts by calling sr io. The function of sr 1o is to provide priority
reception of messages from the host. An acknowledgment back to the host confirms the
serial interrupt was enabled and the protocol received the host’s message.

As mentioned, the code starts running in the ma i n loop. A number of subroutines can be
called from this loop, depending on the state of their associated control flags. Here are
these subroutines and what they do:

The do__a's subroutine automatically transmits a “Hello” test message paced by a timer
in tick. This AutoSend function is activated by a call from se tup if a jumper is de-
tected across the pins near the “dot” end on the protocol board, as discussed above.

The do_ rt subroutine retransmits a message if an ACK has not been received.
Retransmissions are paced by a timer in t i ck. The timer is randomly loaded with one of
eight different delays, which helps reduce the possibility of repeated collisions between
two nodes trying to transmit a message at the same time. The protocol will attempt to
transmit a message up to eight times. The do_r t subroutine manages attempts two
through eight as needed.

The ak snd subroutine sends an ACK/NAK message back to the protocol’s host to indi-
cate the outcome of attempting to transmit a message. When called directly from the
ma in subroutine, it sends a NAK message. When called from do_ rx, it sends an ACK.

The rxsop subroutine detects the message start symbol (SOP) by comparing the bit pat-
tern in the 12-bit correlation buffer updated by p L L to the start symbol pattern. When
the SOP pattern is detected, r x sop modifies flag states and clears buffers in preparation
for receiving the encoded message. As mentioned, this protocol uses 12-bit encoding to
achieve dynamic DC balance. The start symbol is not one of the 12-bit symbols used in
the encoding table, but it is also DC balanced.

The do_ rx subroutine receives and decodes the incoming message, tests the FCS for
message accuracy, returns an ACK to the sender if it has received an error-free data mes-
sage for this node, sends an ACK message to the host if it has received an ACK message
for this node, and sends an error-free data message to the host if the message is for this
node. These tasks are done by calling subroutines from do_r x. Here are these subrou-
tines and what they do:

26

[FRIF M.

The rxmsg subroutine receives each six-bit half symbol from p L L and converts it to a
decoded nibble using the smb L table near the end of the listing. Decoded nibbles are as-
sembled into bytes and added to the received message buffer. When all the message is re-
ceived, control is returned to do_ r x. If a message length overflow occurs, rxmsg fakes
a short message that will fail the FCS test.

The rx f ¢ s subroutine tests the message for errors by recalculating the FCS with the
transmitted FCS bits included in the calculation. If there are no errors, the received FCS
calculation will equal OFOB8H. The rx f ¢ s subroutine uses callsto b_rfcs and
a_rfcs todo the FCS calculation and to test the results.

The acktx subroutine determines if the received message is an ACK for a packet (ID)
being transmitted from this node. If so, ack t x idles transmission attempts and signals
rxmsg to send an ACK message to the host by setting flag states.

When called from rxsmg, aksnd sends an ACK message to the host. Notice that when
aksnd is called from main, it sends a NAK message.

The ackrx subroutine transmits an ACK message back to the sending node when it re-
ceives a valid data message from the sending node addressed to it. The subroutines used
by ackrx are “borrowed” from the transmit side of the protocol and will be discussed
later.

The r xsnd subroutine sends a received data message to the host, provided the message
is for its node and has passed the FCS test.

The rxrst subroutine resets flags and initializes buffers in preparation for receiving the
next packet.

The first byte of a packet sent from the host triggers the serial interrupt service routine
t_isr which calls subroutine srio. The serial interrupt is disabled and the do_ t x sub-
routine is called. This subroutine takes in the message from the host, computes the FCS,
turns the transmitter on, sends the preamble and start symbol, encodes and sends the mes-
sage, and turns the transmitter off. The do_t x subroutine accomplishes these actions by
calling other subroutines. Here are these transmit subroutines and what they do:

The txget subroutine receives the message from the host and loads it into the transmit
message buffer. Provisions are made in txget to exit on a null message (just two
FENDs), time-out on partial messages, or send the first part of an incoming message that
is overflowing in length. Since the serial interrupt service routine is disabled from
time-to-time, a short packet transfer acknowledgment message (PAC) is sent back to the
host to confirm the protocol has the message and is attempting to transmit it. No PAC is
sent on a null message or a time-out as there is nothing to send.

27

[FRIF M.

The tx f c s subroutine calculates the FCS that will be used for error detection at the re-
ceive end. Ituses callstob_tfcs and a_tfcs to do the FCS calculation and to add the
results to the message.

The txpr e subroutine turns on the transmitter and after a short delay sends the preamble
and start symbol using the data in the ts trt table near the end of the listing. Note that
txpre is supported by tick to provide sample-by-sample bit transmission.

The txmsg subroutine encodes the message bytes as 12-bit symbols and transmits them
in cooperation with t i ck. This subroutine uses the smb L table to encode each nibble in
each message byte into six bits.

The t xr st subroutine can either reset to send the same message again or can reset to re-
ceive a new message from the host, based on flag states.

The do_t x subroutine receives a message from the host and attempts to transmit it once.
Additional transmit attempts are done by do_ r t, which is called from ma in as needed.
The do_ r t subroutine uses most of the same subroutines as do_ tx. The do_as sub-
routine can also be called from ma in to provide the AutoSend test transmission and it
also uses many of the same subroutines as do_ t x. And as mentioned earlier, ackrx
uses several of these subroutines to transmit an ACK back for a received message.

4.2 Terminal Program Source

V110T30C.FRM is the Visual Basic source code for the companion terminal program to
DK200A.ASM. After initializing flags, variables, etc., the form window is shown and the
program starts making periodic calls to the Timer1_Timer “heartbeat” subroutine. The
X f e r subroutine provides time-outs for PAC, ACK or NAK messages expected back
from the protocol. X fer is also handy for reminding you to turn on the power switch or
put fresh batteries in the protocol board. The PC’s serial input buffer is set up for polling
(no interrupts) and is serviced by calling RxPtk from Timer1 Timer. The terminal
program also has an AutoSend subroutine, ASPk t, that is called from Timer1 Timer
when AutoSend is active. (No, you are not supposed to use the AutoSend feature in the
protocol and the host program at the same time.) Here is a listing of the terminal program
subroutines and what they do:

RxPkt is called from Timer1 Timer when bytes are found in the serial port input
buffer. RxPk t calls two other subroutines, InCom and ShowPk t.

InCom collects bytes from the serial port input buffer for a period of time set by the
InDel ! variable. These bytes are added to the end of the RPk t $ string variable, which
acts as byte FIFO.

[FRIF M.

28

ShowPk t is then called to display or otherwise process the bytes in RPk t $. The outer
Do, Loop Until (J = 0) structure takes advantage of the framing characters to
separate individual packets in RPk t$. This avoids the need for reading the PC’s serial
port input buffer at precise times which you probably can’t do anyway. As each packet is
removed from the left side of RPk t$, it is checked to see if it is a one-character PAC
(OFFH character), a two-character ACK or NAK, or a data message of three or more
characters. Flags TFLag, ANFlag, NAFlag and TNF Lag are reset by ShowPk t as ap-
propriate and are used by the X f e r monitoring subroutine to confirm messages are flow-
ing back from the protocol in a timely manner. The NAF Lag enables the next AutoSend
transmission. The ShwA CK flag selects either to display inbound messages (and PID
Skips) only, or inbound messages plus PAC, ACK/NAK, TO/FROM and ID information.

Text1 KeyPress isused to build messages for transmission. Editing is limited to
backspacing, and the message is sent by pressing the Enter key or entering the 240" char-
acter.

SndPkt breaks the message into packets, adds the framing characters, the TO/FROM
address and the ID number to each packet and sends them out. SndPk t setsthe TFlag
and ANF Lag flags and clears the value of several variables. NxtPkt is a small subroutine
used by SndPk t that picks a new ID number for each packet.

X f e r monitors the elapsed time from when a packet is sent out (to the protocol) and a
PAC is received back, and the elapsed time from when a packet is sent out and an ACK
or NAK is received back. X f er will display error messages and reset control flags and
other variables through Re Se t TX if these elapsed times get too long.

ASPk t automatically sends test packets using the NxtPk t and SndPk t subroutines. It
is paced by the state of the NAF Lag.

Ge tPkt is a small subroutine that supplies ASPk t with a message. Until the first mes-
sage is typed in, Ge t Pk t provides a default message. It otherwise provides the last mes-
sage typed in.

LenTrap clears a text window when 32,000 bytes of text have accumulated in it.

The remaining subroutines in the terminal program are classical event procedures related
to mouse clicks on the terminal program window. Most of these relate to the Menu bar.

The three top level choices on the Menu bar are File, Edit and View. Under File you can
choose to Exit the terminal program. Under Edit, the next level of choices are the 7o Ad-
dress and the From Address. Under the To Address you can choose Nodes 1, 2, 3, or 4,
with Node 2 the default. Under the From Address you can choose Nodes 1, 2, 3, or 4,
again with Node 2 the default.

29

[FRIF M.

Under View you can choose Clear (screen), Show RX Dups, Show ACK/NAK, and
AutoSend, as discussed earlier. The status bar and its embedded progress bar at the bot-
tom of the form monitors outbound packets even when Show ACK/NAK is not enabled.

4.3 Variations and Options

In most real world applications, s_isr,srio, txget, rxsndand aksnd would be
replaced with resident application subroutines. Your real-world application is left as a
homework assignment. Test, test, test!

Another pair of programs are provided for your experimentation. DK110K.ASM is a sim-
plified “shell” protocol that transmits a message received from the host (once) and sends
any message received with a valid FCS to the host. PAC/ACK/NAK handshaking be-
tween the host and the protocol and between protocol nodes is not implemented. Also, no
TO/FROM address filtering is provided at the protocol level. This gives you the flexibil-
ity to add these types of features either to the protocol or the terminal program yourself.
Terminal Program V110T05B.FRM works with DK110K.ASM and provides a simple
implementation of ACK/NAK handshaking at the host level. Of course, DK110K.ASM is
not intended to work with V110T30C.FRM and DK200A.ASM is not intended to work
with VI10TO5B.FRM.

4.4 Test Results

Laboratory tests show that a 916.5 MHz ASH radio system using the example software
achieves a bit-error-rate between 10 and 10 at a received signal level of -101 dBm us-
ing pulse modulation (or -107 dBm using 100% amplitude modulation). Open-field range
tests using commercial half-wave dipole antennas (Astron Antenna Model AXHINSMS)
demonstrate good performance chest-high at distances of one-eighth mile or more.

[FRIF M.

30

5 Source Code Listings

5.1 DK200A.ASM

DK200A.ASM 2002.07.31 @ 20:00 CST

See RFM Virtual Wire(r) Development Kit Warranty & License for terms of use

Experimental software - NO representation is

made that this software is suitable for any purpose
Copyright(c) 2000 - 2002, RF Monolithics, Inc.

AT89C2051 assembler source code file (TASM 3.01 assembler)
Low signal-to-noise protocol for RFM ASH transceiver

Integrate & dump PLL (I&D) - 62.40 us tick
.NOLIST
#INCLUDE “8051.H” ; tasm 8051 include file
.LIST
; constants:
ITMOD .EQU 022H ; set timers 0 and 1 to mode 2
ITICK .EQU 141 ; set timer TO for 62.40 us tick
ISMOD .EQU 080H ; SMOD = 1 in PCON
IBAUD .EQU OFAH ; 19.2 kbps @ 22.1184 MHz, SMOD = 1
ISCON .EQU 050H ; UART mode 1
RMPT .EQU 159 ; PLL ramp top value (modulo 0 to 159)
RMPW .EQU 159 ; PLL ramp reset (wrap) value
RMPS .EQU 80 ; PLL ramp switch value
RMPI .EQU 20 ; PLL ramp increment value
RMPA .EQU 29 ; PLL 5.625% advance increment value (20 + 9)
RMPR .EQU 11 ; PLL 5.625% retard increment value (20
AKMB .EQU 03EH ; ACK message buffer start address
TXMB .EQU 043H ; TX message buffer start address
TFTX .EQU 044H ; TO/FROM TX message buffer address
IDTX .EQU 045H ; packet ID TX message buffer address
RXMB .EQU 061H ; RX message buffer start address
TFRX .EQU 062H ; TO/FROM RX message buffer address
IDRX .EQU 063H ; packet ID RX message buffer address
FEND .EQU 0COH ; FEND framing character (192)
SOPL .EQU 08AH ; SOP low correlator pattern
SOPH .EQU 0B3H ; SOP high correlator pattern
TXRO .EQU 026H ; TX retry timer count
FCSS .EQU OFFH ; FCS seed
FCSH .EQU 084H ; FCS high XOR mask
FCSL .EQU 08H ; FCS low XOR mask
FCVH .EQU 0FOH ; FCS valid high byte pattern
FCVL .EQU 0B8H ; FCS valid low byte pattern

’

stack: O08H - 021H (26 bytes)

; bit labels:

WBFLG .EQU 010H ; warm boot flag (future use)
PLLON .EQU 011H ; RX PLL control flag
RXISM .EQU 012H ; RX inverted input sample
RXSMP .EQU 013H ; RX input sample

LRXSM .EQU 014H ; last RX input sample
RXBIT .EQU 015H ; RX input bit

RXBFLG .EQU 0l6H ; RX input bit flag

SOPFLG .EQU 017H ; SOP detect flag

RXSFLG .EQU 018H ; RX symbol flag

RM .EQU 019H ; RX FCS message bit

OKFLG .EQU 01AH ; RX FCS OK flag

SIFLG .EQU 01BH ; serial in active flag
TSFLG .EQU 01CH ; output TX sample flag
TXBIT .EQU 01DH ; TX message bit

™ .EQU 01EH ; TX FCS message bit

TXFLG .EQU 01FH ; TX active flag

TMFLG .EQU 020H ; TX message flag

TOFLG .EQU 021H ; get message time out flag
AMFLG .EQU 022H ; AutoSend message flag
ASFLG .EQU 023H ; AutoSend active flag
ANFLG .EQU 024H ; ACK/NAK status flag

31

[FRIF M.

SAFLG
NHFLG

SFLG1
SFLG2
SFLG3
SFLG4
SFLG5
SFLG6
SFLG7
SFLG8
SFLGY9

; register usage:

RO
R1
R2
R3
R4
R5
R6
R7

.EQU
.EQU

.EQU
.EQU
.EQU
.EQU
.EQU
.EQU
.EQU
.EQU
.EQU

; byte labels:

BOOT .EQU
RXID .EQU
RXBL .EQU
RXBH .EQU
RXBB .EQU
RMDC .EQU
RMBIC .EQU
RMBYC .EQU
RMFCS .EQU
RMSBC .EQU
RMLPC .EQU
RMFCC .EQU
TMFECC .EQU
TXSMC .EQU
TMBIC .EQU
TMBYT .EQU
TMBYC .EQU
TXSL .EQU
TXSH .EQU
TMFCS .EQU
TXTL .EQU
TXTH .EQU
TXCNT .EQU
IDBUF .EQU
TEFBUF .EQU
; I/0 pins:

MAX .EQU
RXPIN .EQU
TXPIN .EQU
PTT .EQU
PCRCV .EQU
REFRCV .EQU
RXI .EQU
ID0 .EQU
ID1 .EQU
ID2 .EQU
ID3 .EQU

; start of code:

reset:

t isr:

.ORG
SETB
AJMP

.ORG
ACALL
RETI

025H
026H

027H
028H
029H
02AH
02BH
02CH
02DH
02EH
02FH

022H

026H
027H
028H
029H
02AH
02BH
02CH
02DH
02EH
02FH
030H

031H
032H
033H
034H
035H
036H
037H
038H
039H
03AH
03BH
03CH
03DH

P1.6

P3.
P3.
P1.

~N W N

P3.7
P3.
P3.

o

P1.
P1.
P1l.
P1.

g wN

00H
WBFLG
start

OBH
tick

send ACK/NAK flag
no RX FEND/header flag

spare flag
spare flag
spare flag
spare flag
spare flag
spare flag
spare flag
spare flag
spare flag

WO Jo Ul WN -

RX data pointer
TX data pointer
PLL ramp buffer
RX FCS buffer A
not used

TX FCS buffer A
TX FCS buffer B
RX FCS buffer B

lst byte of flags

RX integrate & dump buffer

RX low buffer, SOP correlator,
RX high buffer, SOP correlator,

RX symbol decode byte buffer
RX symbol decode loop counter

RX symbol decode index pointer

RX message byte counter

RX FCS byte buffer

RX symbol bit counter

RX message loop counter

RX message FCS counter, etc.

TX timer & loop counter

TX output sample counter

TX message bit counter

TX message byte buffer

TX message byte counter

TX message symbol low buffer
TX message symbol high buffer
TX FCS byte buffer

TX timer low byte

TX timer high byte

TX retry counter

packet ID buffer

TO/FROM address buffer

Maxim 218 power (on = 1)

RX input pin (inverted data)
TX output pin (on = 1)

transmit enable (TX = 0)

PC (host) input LED (on = 0)
RX FCS OK LED (on = 0)

RX activity LED (on = 0)
jumper input bit (dot end)

0
jumper input bit 1
jumper input bit 2
jumper input bit 3

hardware reset
set warm boot flag
jump to start

timer 0 interrupt vector

sampling tick subroutine
interrupt done

32

[FRIF M.

s_isr:

start:

main:

mnO:

mnl:

mn2:

mn_d:

do_rx:

rx0:

rxl:
rx2:

rx_d:

tick:

ticO:

ticl:

tic2:

tic3:

.ORG
ACALL
CLR
CLR
RETI

.ORG
ACALL

JNB
CLR
ACALL
SETB
AJMP
JNB
CLR
ACALL
SETB
JNB
ACALL
ACALL
JNB
ACALL
AJMP

CLR
ACALL
CLR
ACALL
JNB
JNB
ACALL
JNB
ACALL
AJMP

ACALL
ACALL
ACALL
SETB

DJINZ
SETB
MOV
MOV
ANL
MOVC

MOV

023H
srio

RI

040H
setup

AMFLG, mn0
PCRCV

do as
PCRCV
mnl
TMFLG, mnl
PCRCV

do rt
PCRCV
SAFLG, mn2
aksnd
rxsop
SOPFLG, main
do rx
main

ES

rxmsg
PLLON
rxfcs
OKFLG, rx2
TXFLG, rx0
acktx
SAFLG, rx0
aksnd

rx2
ASFLG, rx1
ackrx
rxsnd
rxrst
PLLON

TI

RI

ES

PSW

ACC

C,RXPIN
RXISM, C
TSFLG, ticO
A, TXSMC
ticO

C, TXBIT
TXPIN, C
TXSMC
PLLON, ticl
pll

TOFLG, tic2
TMFCC

A, TMFCC

A, #50,tic2
TOFLG
TMFCC, #0
TXTL

A, TXTL
tick d
ASFLG, tic3
TXTH, tick d
AMFLG
TXTL, #0
TXTH, #TXRO
tick d
TXFLG, tick d
TXTH, tick d
TMFLG

DPTR, #delay
A,TL1

A, #07H

A, QA+DPTR
TXTH, A
TXTL, #0

serial interrupt vector
serial I/0 subroutine

clear TI (byte sent) flag
clear RI (byte received) flag
interrupt done

above interrupt code space
initialization code

skip if AutoSend idle
else turn PCRCV LED on

do AutoSend

turn PCRCV LED off

and jump to RX SOP detect
skip if TX message idle
else turn PCRCV LED on

do TX retry

turn PCRCV LED off

skip if send ACK/NAK flag reset
else send NAK to host

do RX SOP detect

if not SOP loop to main
else do RX message

and loop to main

deactivate serial interrupts
decode RX message

idle RX PLL

test RX message FCS

reset if FCS error

skip if send TX idle

if TX ACK, set send ACK flag
skip if send ACK/NAK flag reset
else send ACK message to host
and jump to reset RX

don’t ACK AutoSend

ACK RX message

send RX message to host

reset for next RX message
enable RX PLL

clear TI flag

clear RI flag

activate serial interrupts

RX done

push status

push accumulator

read RX input pin

store as inverted RX sample
skip if TX sample out idle
else get sample count

skip if 0

else load TX bit

into TX output pin

decrement sample count

skip if PLL idle

else run RX PLL

skip if get message timeout idle
else bump timeout counter
get counter

skip if counter <> 50 (5.2 ms)
else reset time out flag
reset counter

bump TX timer low

load TX timer low

done if no rollover

skip if AutoSend idle
decrement TXTH, done if <> 0
else set AM message flag
clear TX delay low

reload TX delay high

and jump to ticé

skip if TX idle

decrement TXTH, done if <> 0
else set TM message flag
point to delay table

get random table offset
mask out upper 5 bits

load byte from table

into TX delay high

clear TX delay low

[FRIF M.

33

MOV A, TXCNT ; load retry count
CJINE A, #9,tick d ; if <> 9 jump to tick d
CLR TMFLG ; else reset send TX message
CLR ANFLG ; reset ACK/NAK flag (NAK)
SETB SAFLG ; set send ACK/NAK flag
CLR TXFLG ; reset TX active flag
tick d: POP ACC ; pop accumulator
- POP PSW ; pop status
RET ; tick done
pll: MOV C, RXSMP ; load RX sample
MOV LRXSM, C ; 1into last RX sample
MOV C,RXISM ; get inverted RX sample
CPL C ; 1lnvert sample
MOV RXSMP, C ; and store RX sample
JNC pll0 ; 1if <> 1 jump to pllO
INC RXID ; else increment I&D
pll0: JNB LRXSM, plll ; 1f last sample 1
CPL C ; lnvert current sample
plll: JNC pll4 ; 1f no edge jump to pll4
MOV A,R2 ; else get PLL value
CLR C ; clear borrow
SUBB A, #RMPS ; subtract ramp switch value
Jc pll3 ; 1f < 0 then retard PLL
pll2: MOV A,R2 ; else get PLL value
ADD A, #RMPA ; add (RMPI + 5.625%)
MOV R2,A ; store PLL value
AJMP pll5 ; and jump to pllb
pll3: MOV A,R2 ; get PLL value
ADD A, #RMPR ; add (RMPI - 5.625%)
MOV R2,A ; store PLL value
AJMP pll5 ; and jump to pll5
plld: MOV A,R2 ; get PLL value
ADD A, #RMPI ; add ramp increment
MOV R2,A ; store new PLL value
pll5: CLR C ; clear borrow
MOV A,R2 ; get PLL ramp value
SUBB A, #RMPT ; subtract ramp top
Jc pllD ; 1f < 0 don’t wrap
pllé: MOV A,R2 ; else get PLL value
CLR C ; clear borrow
SUBB A, #RMPW ; subtract reset value
MOV R2,A ; and store result
CLR C ; clear borrow
MOV A,RXID ; get I&D buffer
SUBB A, #5 ; subtract 5
JNC pll7 ; 1f I&D count => 5 jump to pll7
CLR RXBIT ; else RX bit = 0 for I&D count < 5
SETB RXBFLG ; set new RX bit flag
MOV RXID, #0 ; clear the I&D buffer
AJMP plls ; and jump to pll8
pll7: SETB RXBIT ; RX bit = 1 for I&D count => 5
SETB RXBFLG ; set new RX bit flag
MOV RXID, #0 ; clear the I&D buffer
plls8: JB SOPFLG, pllA ; skip after SOP detect
MOV A, RXBH ; else get RXBH
CLR C ; clear carry
RRC A ; rotate right
JNB RXBIT,pll9 ; if bit = 0 jump to pll9
SETB ACC.7 ; else set 7th bit
pll9: MOV RXBH, A ; store RXBH
MOV A, RXBL ; get RXBL
RRC A ; shift and pull in carry
MOV RXBL, A ; store RXBL
AJMP pll d ; done for now
pllA: MOV A, RXBL ; get RXBL
CLR C ; clear carry
RRC A ; shift right
JNB RXBIT,pllB ; 1if bit = 0 jump to pllB
SETB ACC.5 ; else set 5th bit
pllB: MOV RXBL, A ; store RXBL
INC RMSBC ; bump bit counter
MOV A, RMSBC ; get counter
CJINE A, #6,pllC ; 1f <> 6 jump to pllC
MOV RXBB, RXBL ; else get symbol
MOV RMSBC, #0 ; reset counter
SETB RXSFLG ; set symbol flag
pllcC: AJMP pll d ; done for now
pllD: CLR RXBFLG ; clear RXBFLG
pll d: RET ; PLL done

[FRIF M.

34

rxsop:

sop_d:
rxmsg:

rxml :

rxm2 :

rxm3:

rxmé :

rxmb:

rxmoé:

rxm7:

rxm8:

rxm_d:

rxfcs:
rxf0:

rxf d:

acktx:

atx_d:

JNB
CLR
MOV
CJINE
MOV
CJINE
CLR
MOV

MOV
CLR
SETB
CLR
RET

JNB
CLR

MOV
MOV
MOV
MOVC
XRL

INC
DJINZ

SWAP
MOV
JNB
CLR
MOV
MOV
MOV
MOV
MOVC
XRL

INC
DJINZ
MOV
ORL
SWAP
MOV

CJINE
MOV
ANL
MOV
MOV
CLR
SUBB

MOV
MOV
INC
DJINZ
MOV
SETB
RET

MOV
MOV
INC
ACALL
DJINZ
ACALL
RET

MOV
ANL
CJINE
MOV
SWAP
CJINE
MOV
CJINE
SETB
SETB
CLR
RET

RXBFLG, sop_d
RXBFLG
A, RXBL

A, #SOPL, sop_d

A, RXBH

A, #SOPH, sop_d

A
RXBL, A

RXBH, A

RMSBC, A
RXSFLG

SOPFLG

RXI

RXSFLG, rxmsg
RXSFLG
DPTR, #smbl
RMDC, #16
RMBIC, #0
A,RMBIC

A, @A+DPTR
A, RXBB
rxm3

RMBIC
RMDC, rxm2
A,RMBIC

A

RXBH, A
RXSFLG, rxm4
RXSFLG
DPTR, #smbl
RMDC, #16
RMBIC, #0
A,RMBIC

A, @A+DPTR
A, RXBB
rxm7

RMBIC
RMDC, rxm6
A,RMBIC

A, RXBH

A

RXBH, A
@RO, RXBH

RO, #RXMB, rxm8

A, RXBH
A, #63
RMBYC, A
RMFCC, A
C

A, #30
rxm8
RMBYC, #4
RMFCC, #4
RO
RMFCC, rxmsg
RO, #RXMB
RXI

RMFCC, RMBYC
RMFCS, @RO
RO

b rfcs
RMFCC, rxf0
a rfcs

A, RXMB
A, #64

A, #64,atx d
A, TFBUF
A

A,TFRX,atx d
A, IDBUF -
A, IDRX,atx d
ANFLG -
SAFLG

TXFLG

done if no RX bit flag
else clear RX bit flag
get low RX buffer

done if <> SOPL

else get high RX buffer
done if <> SOPH

else clear A

clear RX low buffer
clear RX high buffer
clear RX symbol bit counter
clear RX symbol flag
set SOP detected flag
RXI LED on

SOP detect done

wait for RX symbol flag

clear RX symbol flag

point to RX symbol decode table
16 symbol decode table entries
index into symbol table

load index into A

get table entry

XOR to compare with RXBB

exit loop with decoded nibble
else bump index

and try to decode again

get decoded nibble

swap to high nibble

into RXBH (low nibble is high)
wait for symbol flag

clear flag

point to symbol decode table
16 symbol decode table entries
reset symbol table index

load index into A

get table entry

XOR to compare with RXBB

exit loop with decoded nibble
else bump index

and try to decode again

get decoded nibble

add RXBH low

nibbles now in right order
store in RXBH

and store in RX message buffer
skip if not 1st message byte
else get 1st byte

mask upper 2 bits

load message byte counter

and RX message loop counter
clear borrow

compare number of bytes to 30
skip if < 30

else force byte counter to 4
and force loop counter to 4
bump pointer

if <> 0 get another byte
reset RX message pointer

turn LED off

RX message done

move byte count to loop counter
get next message byte

bump pointer

build FCS

loop for next byte

test FCS

RX FCS done

get 1lst RX byte

mask ACK bit

done if <> ACK

else get TX TO/FROM

swap for FROM/TO

done if <> RX TO/FROM

else get TX packet ID

done if <> TX ID

else set ACK/NAK flag (ACK)
set send ACK/NAK message flag
clear TX active flag

ACK TX done

[FRIF M.

35

ackrx:

arx0:
arx_d:

rxsnd:

rxs0:
rxsl:
rxs2:

rxs3:
rxs4:
rxs _d:

aksnd:

CLR

SWAP

JNB

A, TFBUF
A, #15
B,A

A, TFRX

A

A, #15
A,B,arx0
R1, #AKMB
@R1, #69
TMFCS, #69
b tfcs
R1

A, TFRX
A

@RL,A
TMFCS, A
b tfcs
R1

A, IDRX
@RL,A
TMFCS, A
b_tfcs
R1

a tfcs
R1, #AKMB
TMBYC
TMBYC, #5
txpre
txmsg

A
TMBYT, A
TXSMC, A
TXSL, A
TXSH, A
R1, #TXMB
TMBYC
REFRCV

PCRCV

A, TFBUF
A, #15

B,A

A, TFRX

A

A, #15
A,B,rxs4
RMBYC
RMBYC

RO, #RXMB
QRO, #FEND
NHFLG, rxs0

SBUF, @RO
TI, rxs2

TI

RO

RMBYC, rxsl
NHFLG, rxs4
SBUF, # FEND
TI, rxs3

TI

RFRCV
PCRCV

ES

PCRCV
SAFLG
TXFLG

A, IDBUF

A, #7

A

A, TXCNT
ANFLG, aksO

get local TO/FROM address
mask to get local FROM address
store FROM address

get T/F address from RX buffer
swap - FROM/TO

mask to get TO address
done if not to this node
load ACK pointer

ACK bit + 5 bytes

load TX message FCS byte
and build FCS

bump pointer

get TO/FROM byte

swap TO/FROM addresses
add to ACK buffer

load TX message FCS byte
and build FCS

bump pointer

get packet ID byte

add ID to ACK message
load TX message FCS byte
and build FCS

bump pointer

add FCsS

reset ACK pointer

push TX message TMBYC

5 bytes in ACK

send TX preamble

send TX message

reset for next TX

clear TX message byte
clear TX out count

clear TX symbol low

clear TX symbol high
point Rl to message start
restore TX message TMBYC
turn FCS LED off

RX ACK done (rxsnd sets ES)

turn PC LED on

get local TO/FROM address

mask to get local FROM address
store FROM address

get T/F address from RX buffer
swap - FROM/TO

mask to get TO address

if <> don’t send to host

don’t send

the 2 FCS bytes

reset RX message pointer
replace # bytes with 1st FEND
skip if no FEND/header flag reset
bump past FEND

decrement byte count

bump past TO/FROM

decrement byte count

bump past ID

decrement byte count

clear TI flag

send byte

wait until byte sent

clear TI flag

bump pointer

loop to echo message

skip if no FEND/header flag set
add 2nd FEND

wait until byte sent

clear TI flag

turn FCS LED off

turn PC LED off

send RX message done

disable serial interrupts
turn PC LED on

reset send ACK/NAK flag
reset TX active flag

get local ID

mask unused bits

swap ID to upper IDS nibble
add retry count to IDS

skip if NAK

[FRIF M.

36

aksO:

aksl:

aks?2:

aks3:

aks4:

aks_d:

rxrst:

rxr_d:

b rfcs:
brf0:

brfl:

brf2:
brfcs d:

a rfcs:

arf0:
arfcs d:

srio:

sr_0:

SETB
MOV
MOV
RET

PUSH
PUSH
JNB
CLR
JNB
CLR
JNB
CLR

A, #128

B,A

A, TFBUF

A

TI
SBUF, # FEND
TI,aksl

TI

SBUF, A
TI,aks2

TI

SBUF, B
TI,aks3

TI
SBUF, # FEND
TI,aks4
txrst
RFRCV

RMFCC, A
RO, #RXMB
OKFLG
SOPFLG
RXI

RMLPC, #8
C
A,RMFCS
A
RMFCS, A
RM, C

C

A,R3

A

R3,A
A,R7

A

R7,A
RM, brfl
C

brf2
A,R3

A, #FCSH
R3,A
A,R7

A, #FCSL
R7,A
RMLPC, brf0

A,R3

A, #FCVH
arf0
A,R7

A, #FCVL
arf0
RFRCV
OKFLG
R3, #FCSS
R7, #FCSS

PSwW
ACC
TI,sr O

SIFLG,sr_1
PCRCV

else set ACK bit
hold IDS in B

get local TO/FROM
switch TO and FROM
clear TI flag

send lst FEND

wait until byte sent
clear TI flag

send TO/FROM

wait until byte sent
clear TI flag

send IDS

wait until byte sent
clear TI flag

send 2nd FEND

wait until byte sent
reset TX state

turn FCS LED off
turn PC LED off
clear TI flag

clear RI flag

enable serial interrupts
send ACK message done

clear A

clear buffer

clear buffer

clear buffer

clear RX byte count
clear loop counter
point RO to message start
clear FCS OK flag
enable SOP test
turn RXI LED off

RX reset done

load loop count of 8

clear carry bit

load RX message byte

shift 1sb into carry

store shifted message byte

load RM with 1sb

clear carry bit

load high FCS byte

shift right

store shifted high FCS

load low FCS byte

shift and pull in bit for FCS high
store shifted low FCS

if 1sb of low FCS = 0, jump to brfl
else complement carry bit

if RM XOR (low FCS 1lsb) = 0 jump to brf2
else load high FCS

and XOR with high FCS poly

store high FCS

load low FCS

XOR with low FCS poly

store low FCS

loop through bits in message byte
done this pass

load FCS high
compare with OFOH

if <> 0 jump to arfO
load FCS low

else compare with 0B8H
if <> 0 jump to arfO
else turn FCS LED on
set FCS OK flag
reseed FCS high
reseed FCS low

RX FCS done

save
environment

skip if not TI flag

else clear TI flag

skip if not RI flag

and clear RI flag

skip if serial in inactive
else turn PC LED on

[FRIF M.

37

sr_1:

do_as:

do_tx:

dol:

do rt:

txget:

txg0:

txgl:

txg2:

txg3:

txg4d:

txgh:
txgb:

txg7:

txg8:

txg9:

ACALL
SETB
POP
POP
RET

CLR
ACALL
ACALL
ACALL
ACALL
ACALL
SETB
RET

AJMP

AJMP
MOV
MOV

INC
MOV
MOV
CLR
SUBB

MOV
CJINE
AJMP
MOV
MOV
MOV
CJINE
MOV
AJMP
CLR
CLR
SETB
MOV
MOV
CLR
MOV
JNB
CLR
MOV
JNB
CLR

do_tx
PCRCV
ACC
PSwW

PLLON
hello2
txfcs
txpre
txmsg
txrst
PLLON

txget
TXFLG, dol
PLLON
txfcs
txpre
txmsg
TXCNT
txrst
PLLON

PLLON
txpre
txmsg
TXCNT
txrst
PLLON

A, SBUF
TMBYT, A

A, #FEND
txg0

txg d

@R1, TMBYT
TMBYC
TMFCC, #0
TOFLG

RI

TOFLG, txg3
RI, txg2

RI

TOFLG

txg4
TMBYC, #2
txgb

A, SBUF
TMBYT, A
TMBYC

R1

@R1, TMBYT
A, TMBYC

C

A, #28

txgb

A, TMBYT

A, #FEND, txgl
txg6

@R1, #FEND
R1, #TXMB
A, TMBYC

A, #2,txg’
TMBYC, #0
txg d
SIFLG
TOFLG
TXFLG
TFBUF, TFTX
IDBUF, IDTX
TI
SBUF, # FEND
TI,txg8

TI

SBUF, #255
TI,txg9

TI

get & transmit message from host
turn PC LED off

restore
environment

serial in done

idle RX PLL

get AutoSend message
build and add FCS
send TX preamble
send TX message

reset TX

enable RX PLL
TX message done

get TX message from host
skip if send TX idle
else idle RX PLL

build and add FCS

send TX preamble

send TX message
increment TX count

reset TX

enable RX PLL
TX message done

idle RX PLL

send TX preamble
send TX message
increment TX count

reset TX

enable RX PLL
TX message done

get byte

copy to TMBYT
compare to FEND
if FEND jump to txg0

else done

store 1lst FEND

bump TX byte counter

reset timeout counter

set timeout flag

clear RI flag

if TOFLG reset jump to txg3
else loop until next byte
clear RI flag

clear TOFLG

and jump to txg4
look like null message
and jump to txgb

get byte

copy to TMBYT
bump byte counter
bump pointer RI1

store byte
load counter
clear carry

test for 28 bytes

if 28 handle overflow at txgb
else load byte

if <> FEND loop to txgl
else jump to txg6 on 2nd FEND
force 2nd FEND

reset TX message pointer
get byte count

if <> 2 jump to txg7

else reset byte counter
Jjump to txg d

idle serial in

clear timeout flag

set TX active flag

update local TO/FROM buffer
update local ID buffer
clear TI flag

send lst FEND

wait until byte sent

clear TI flag

send PAK byte

wait until byte sent

clear TI flag

38

[FRIF M.

txgA:
txg d:

txfcs:

txf0:

txfl:
txf2:

txf d:
txpre:

txp0:
txpl:

txp2:

txp3:

txp d:

txmsg:

txmO:

MOV
JNB
CLR
RET

INC
MOV
MOV

DEC
MOV
INC
ACALL
DJINZ
ACALL
MOV

MOV
MOV
ANL
MOVC
MOV
AJMP
MOV
MOV
SETB
RET

CLR

DJINZ

MOV

MOVC

SWAP

MOVC
MOV
MOV
MOV
MOV
JINZ
MOV
CLR
SUBB

SBUF, #FEND
TI,txghA
TI

TMBYC

@R1, TMBYC
TMFCC, TMBYC
TMFECC
TMFCC
TMFCS, @R1
R1

b_tfcs
TMFCC, txf0
a tfcs

R1, #TXMB
ASFLG, txfl
DPTR, #delay
A, TL1

A, #07H

A, @A+DPTR
TXTH, A
txf2

TXTH, #TXR0
TXTL, #0
TMFLG

PTT

B, #200
B, txp0
DPTR, #tstrt
B, #0

A,B

A, @QA+DPTR
TMBYT, A
TMBIC, #4
TXSMC, #0
TSFLG

A, TXSMC
txp2

A, TMBIC
txp3

A,B

c

A, #11
txp d

B

A,B

A, @QA+DPTR
TMBYT, A
TMBIC, #4
A, TMBYT
c

A
TXBIT,C
TMBYT, A
TMBIC
TXSMC, #8
txp2

B, #1

A, @R1
TMBYT, A
DPTR, #smbl
A, #0FH

A, QA+DPTR
TXSL, A

A, TMBYT

A

A, #0FH

A, @A+DPTR
TXSH, A
TMBIC, #12
TXSMC, #0
A, TXSMC
txm0

A, TMBIC

C

A, #7

send 2nd FEND
wait until byte sent
clear TI flag
get TX message done

bytes including FCS
replace lst FEND with # bytes

move byte count to loop counter

loop count is 2 less
than # bytes including FCS
get next message byte
bump pointer

build FCS

loop for next byte

add FCs

reset TX message pointer
skip if AutoSend

point to delay table

get random table offset
mask upper 5 bits

load table byte

into TX delay high

skip AutoSend delay

load AutoSend delay
clear TX delay low

set TX message flag

TX FCS done

turn PTT on

load PTT delay count
loop to delay

point to TX start table
clear B

B holds table offset
load table entry

into TMBYT

load bit count

clear sample count

turn TX sample out on
get sample count

loop until sample count 0
get bit count

if <> 0 jump to txp3
else get current offset (0 to
clear carry

subtract ending offset
if 0 done

else bump byte count
get count/offset

load table entry

into TMBYT

reload bit count

get TX message byte
clear carry

shift right into carry
load next bit

store shifted message byte
decrement bit count
reload sample count
loop again

TX preamble done

count 1lst byte sent

get 1lst TX message byte
into TMBYT

point to symbol table
clean offset

get 6-bit symbol

move to TXSL

get TMBYT

swap nibbles

clean offset

get 6-bit symbol

move to TXSH

set bit count to 12
clear sample count

get sample count

loop until sample count O
get bit count

clear carry

subtract 7

39

11)

[FRIF M.

JNC txml if => 7 jump to txml

MOV A, TMBIC ; else get bit count
JNZ txm2 ; 1if > 0 jump to txm2
MOV A,B ; else get current byte number
CLR C ; clear carry
SUBB A, TMBYC ; subtract TX message byte count
JZ txm3 ; 1f 0 done
INC R1 ; else bump byte pointer
INC B ; and bump byte counter
MOV A, @R1 ; get next byte
MOV TMBYT, A ; into TMBYT
MOV DPTR, #smbl ; point to symbol table
ANL A, #0FH ; offset
MOVC A, QA+DPTR ; get 6-bit symbol
MOV TXSL,A ; move to TXSL
MOV A, TMBYT ; get TMBYT
SWAP A ; swap nibbles
MOV DPTR, #smbl ; point to symbol table
ANL A, #0FH ; clean offset
MOVC A, QA+DPTR ; get 6-bit symbol
MOV TXSH, A ; move to TXSH
MOV TMBIC, #12 ; set bit count to 12
txml: MOV A, TXSL ; get low TX symbol
CLR C ; clear carry
RRC A ; shift right into carry
MOV TXBIT,C ; load next bit
MOV TXSL,A ; store shifted message byte
DEC TMBIC ; decrement bit count
MOV TXSMC, #8 ; reload sample count
AJMP txm0 ; loop again
txm2: MOV A, TXSH ; get high TX symbol
CLR C ; clear carry
RRC A ; shift right into carry
MOV TXBIT, C ; load next bit
MOV TXSH, A ; store shifted message byte
DEC TMBIC ; decrement bit count
MOV TXSMC, #8 ; reload sample count
AJMP txm0 ; loop again
txm3: CLR TSFLG ; clear TX sample out flag
CLR TXPIN ; clear TX out pin
SETB PTT ; turn PTT off
txm_d: RET ; TX message done
txrst: CLR TMFLG ; clear TX message flag
CLR AMFLG ; clear AutoSend message flag
CLR A ; reset for next TX
MOV TMBYT, A ; clear TX message byte
MOV TMFCC, A ; clear TX FCS count
MOV TXSMC, A ; clear TX out count
MOV TXSL, A ; clear TX symbol low
MOV TXSH, A ; clear TX symbol high
MOV R1, #TXMB ; point Rl to message start
JB ASFLG, txr_d ; skip if in AutoSend
JB TXFLG, txr_d ; skip if send TX active
MOV TMBYC, A ; reset TX message byte count
MOV TXCNT, A ; reset TX retry count
MOV TXTL, A ; clear TX timer low
MOV TXTH, A ; clear TX timer high
SETB SIFLG ; enable serial in
txr_d: RET ; TX reset done
b tfcs: MOV B, #8 ; load loop count of 8
btf0: CLR C ; clear carry bit
MOV A, TMFCS ; load TX message byte
RRC A ; shift 1lsb into carry
MOV TMFCS, A ; store shifted message byte
MOV ™, C ; load ™™ with 1sb
CLR C ; clear carry bit
MOV A,R5 ; load high FCS byte
RRC A ; shift right
MOV R5,A ; store shifted high FCS
MOV A,R6 ; load low FCS byte
RRC A ; shift and pull in bit for FCS high
MOV R6, A ; store shifted low FCS
JNB ™, btfl ; 1f 1sb of low FCS = 0, jump to btfl
CPL C ; else complement carry bit
btfl: JNC btf2 ; 1f TM XOR (low FCS 1lsb) = 0 jump to btf2
MOV A,R5 ; else load high FCS
XRL A, #FCSH ; and XOR with high FCS poly
MOV R5,A ; store high FCS
MOV A,R6 ; load low FCS

[FRIF M.

40

btf2:
btfcs_d:

a tfcs:

atfes d:

setup:

tick su:

uart su:

as set:
ser_on:
isr on:
setup d:

initr:

clr r:

ini_d:

hello:

snd_h:

XRL
MOV
DJINZ
RET

MOV
CPL
MOV

MOV
CPL
MOV
MOV
MOV
RET

CLR
SETB
CLR
MOV
CLR
CLR
MOV
MOV
SETB
SETB
SETB
CLR
CLR
MOV
MOV
MOV
SETB
MOV
MOV

CLR
CLR
ACALL
ACALL
MOV
SETB
MOV

SETB
MOV

ACALL
SETB
SETB
SETB
RET

ANL
MOV
MOV
CLR
MOV
INC
DJINZ
MOV
MOV

MOV
MOV
MOV
MOV
MOV
MOV
CLR
SETB
RET

MOV
MOV
MOV
MOV
MOVC
CLR
MOV

A, #FCSL
R6,A
B,btf0

A,R6

A

@R1,A

R1

A,R5

A

@R1,A
R5, #FCSS
R6, #FCSS

EA

PTT

TXPIN
TMOD, #ITMOD
TRO

TFO

THO, #ITICK
TLO, #ITICK
TRO

ETO

MAX

TR1

TF1
TH1, # IBAUD
TL1, #IBAUD
PCON, #ISMOD
TR1

SCON, #ISCON
A, SBUF

A

RI

TI

hello
initr
TXTH, #TXRO
SIFLG
C,ID3
as_set
NHFLG

C, IDO
ser_on
hello2

ES

EA

PLLON

BOOT, #1
RO, #35
B, #93

A

@QRO, A

RO

B,clr r
RO, #RXMB
R1, #TXMB
R2,A

R3, #FCSS
R5, #FCSS
R6, #FCSS
R7, #FCSS
TFBUF, #34
IDBUF, #3
SOPFLG
PTO

DPTR, #table
B, #13

R7,#0

A,R7

A, @A+DPTR
TI

SBUF, A

XOR with low FCS poly

store low FCS

loop through bits in message byte
done this pass

load FCS (high/low switch)

1’s complement

store at end of TX message
increment TX message byte pointer
load FCS (high/low switch)

1’s complement

store at end of TX message

reseed FCS high

reseed FCS low

add TX FCS done

disable interrupts

turn PTT off

turn TX modulation off

set timers TO and Tl to mode 2
stop timer TO

clear TO overflow

load count for 62.40 us tick
load count for 62.40 us tick
start timer TO

unmask TO interrupt

power up Maxim RS232 converter
stop timer T1

clear Tl overflow

load baud rate count

load baud rate count

SMOD = 1 for baud rate @ 22.1184
start baud rate timer T1
enable UART mode 1

clear out UART RX buffer
clear A

clear RI (byte received) flag
clear TI (byte sent) flag
send start up message
initialize TX & RX

load default AutoSend delay
set serial in flag active
read ID3

skip if no ID3 Jjumper

else set no FEND/header flag
read IDO

skip if no IDO Jjumper

else do AutoSend

enable serial ISR

enable interrupts

activate RX PLL

setup done

warm boot (don’t reset WBFLG)
starting here

for 93 bytes

clear A

clear RAM

bump RAM pointer

loop again

load RX buffer pointer
load TX buffer pointer
clear R2

seed R3

seed R5

seed R6

seed R7

initialize TO/FROM 2 & 2
initialize ID = 3

clear SOPFLG

tick is 1lst priority
done

point to table

load loop count in B

R7 has 1lst table entry
move table offset into A
load table byte

clear TI flag

send byte

41

MHz

[FRIF M.

nxt tx:

hello d:

hello2:

snd_h2:

helo2 d
; tables:

tstrt:

smbl:

delay:

table:

tbl 2:

JNB
INC
DJINZ
RET

MOV
MOV
MOV

MOV
MOVC
MOV
INC
INC
DJINZ
MOV
CLR
SETB
RET

TI,nxt_tx
R7
B,snd_h

DPTR, #tbl 2
R1, #TXMB
B, #10
TMBYC, #0
A, TMBYC

A, @A+DPTR
@R1,A
TMBYC

R1

B, snd h2
R1, #TXMB
SIFLG
ASFLG

10
10
10
10
10
10
10
10
10

11

13
14
19
21
22
25
26
28
35
37
38
41
42

50
52
00

020H
044H
032H
058H
028H
04EH
03CH
062H

192

wait
bump

loop to send message

done

point

reset TX buffer pointer
loop count for 9 bytes
offset for 1lst table entry
move table offset into A

load
into

until sent
index

to table 2

table byte
TX buffer

increment TMBYC
increment R1

loop to load message

reset

reset serial input
set AutoSend flag

preamble/SOP table

table
table
table
table
table
table
table
table
table
table
table

4-to-
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
overf

.50
.10
.80
.40
.65
.25
.95
.55

PORFRORFORr O

start
table
table
table
table
table
table
table
table
table
table
table
table

table
table
table
table
table

TX pointer

data
data
data
data
data
data
data
data
data
data
data

6 bit table
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data

low

second
second
second
second
second
second
second
second

up message
data
data
data
data
data
data
data
data
data
data
data
data

data
data
data
data
data

42

[FRIF M.

.BYTE ‘17

.BYTE ‘1
.BYTE ‘o’
.BYTE A
.BYTE 192
.END

5.2 V110T30C.FRM

VERSION 5.00

Object = “{648A5603-2C6E-101B-82B6-000000000014}#1.1#0"; ”MSCOMM32.0CX"
Object = “{F9043C88-F6F2-101A-A3C9-08002B2F49FB}#1.2#0"; ”COMDLG32.0CX"
Object = “{831FDD16-0C5C-11D2-A9FC-0000F8754DA1}#2.0#0"; ”MSCOMCTL.OCX"
Begin VB.Form Forml
Caption = “V110T30C Terminal Program for DK200A Protocol - 2002.08.07 Rev”
ClientHeight = 5235
ClientLeft = 225
ClientTop = 630
ClientWidth = 7785
LinkTopic = “Forml"
MaxButton = 0 ‘False
ScaleHeight = 5951.697
ScaleMode = 0 ‘User
ScalewWidth = 7905
Begin MSComctlLib.ProgressBar ProgressBarl
Height = 251
Left = 1162
TabIndex = 3
Top = 4934
Width = 4875
_ExtentX = 8599
_Extenty = 450
_Version = 393216
Appearance = 0
Scrolling = 1
End

table data
table data
table data
table data
table data

; end of source code

Begin MSComctlLib.StatusBar StatusBarl
2 ‘Align Bottom

Align =
Height =
Left =
TabIndex
Top
Width
ExtentX
“ExtentY
~Version =
BeginProperty Panels
NumPanels =
BeginProperty Pan
Alignment
Bevel
Object.Width
MinWidth
EndProperty
BeginProperty Pan
Alignment
Object.Width
MinWidth
Text
TextSave
EndProperty
BeginProperty Pan
Object.Width
MinWidth
EndProperty
BeginProperty Pan
Alignment
Text
TextSave
EndProperty
EndProperty
End

375
0
2
4860
7785
13732
661
393216
{8E3867A5-8586-11D1-B16A-00C0F0283628}
4
ell {B8E3867AB-8586-11D1-B16A-00C0F0283628}
= 1
0
= 148
= 148
el2 {B8E3867AB-8586-11D1-B16A-00C0F0283628}
= 1
= 1737
= 1737
= “TX Buffer”
= “TX Buffer”

el3

eld

{8E3867AB-8586-11D1-B16A-00C0F0283628}

8755
8755

{8E3867AB-8586-11D1-B16A-00C0F0283628}

1
“Keyboard”
“Keyboard”

Begin MSComDlg.CommonDialog CommonDialogl

Left =
Top =
_ExtentX =
_ExtentY =

240
4320
688
688

43

[FRIF M.

Version
End
Begin VB.TextBox Te
Height
Left
Locked
MultiLine
ScrollBars
TabIndex
Top
Width
End
Begin VB.Timer Time
Left
Top
End
Begin MSCommLib.MSC
Left
Top
_ExtentX
ExtentY
“Version
DTREnable
End
Begin VB.TextBox Te
Height
Left
MultiLine
ScrollBars
TabIndex
Top
Width
End
Begin VB.Menu mnuFi
Caption
Begin VB.Menu mn
Caption
End
End
Begin VB.Menu mnuEd
Caption
Begin VB.Menu mn
Caption
Begin VB.Menu
Caption
End
Begin VB.Menu
Caption
Checked
End
Begin VB.Menu
Caption
End
Begin VB.Menu
Caption
End
End
Begin VB.Menu mn
Caption
Begin VB.Menu
Caption
End
Begin VB.Menu
Caption
Checked
End
Begin VB.Menu
Caption
End
Begin VB.Menu
Caption
End
End
End
Begin VB.Menu mnuVi
Caption
Begin VB.Menu mn
Caption
End

= 393216

xt2
= 2323
= 148
= -1 ‘True
= -1 ‘True
= 2 ‘“Wertical
= 1
= 0
7460
rl
= 720
= 4320
omm MSComml
= 1200
= 4320
= 794
= 794
= 393216
= -1 ‘True
xtl
= 2323
= 120
= -1 ‘True
= 2 ‘“Wertical
= 0
= 2513
= 7460
le
= “&File”
uExit
= “EB&xit”
it
= “eEdit”
uToAdr
= “To Address”
mnuTN1
= “Node 1"
mnuTN2
= “Node 2"
= -1 ‘True
mnuTN3
= “Node 3"
mnuTN4
= “Node 4"
uFrmAdr
= “From Address”
mnuFN1
= “Node 1"
mnuFN2
= “Node 2"
= -1 ‘True
mnuFN3
= “Node 3"
mnuFN4
= “Node 4"
ew
= “gView”
uClear
= “&Clear”

44

[FRIF M.

Begin VB.Menu mnuDups

Caption = “Show RX &Dups”
Checked = -1 1‘True
End
Begin VB.Menu mnuShw
Caption = “&Show ACK/NAK”
Checked = -1 1‘True
End
Begin VB.Menu mnuAutoSnd
Caption = “&AutoSend”
End
End
End
Attribute VB Name = “Forml"

Attribute VB GlobalNameSpace = False
Attribute VB Creatable = False
Attribute VB PredeclaredId = True
Attribute VB Exposed = False

V110T30C.FRM, 2002.08.07 @ 08:00 CDT

is suitable for any purpose

For protocol software version DK200A.ASM

Compiled in Microsoft Visual Basic 6.0

‘' global variables:
Dim ComData$
Dim ComTime!
Dim KeyIn$
Dim TXFlag As Integer
Dim TNFlag As Integer
Dim TPkt$
Dim TSPkt$
Dim TXPkt$
Dim SPkt$
Dim TFlag As Integer
Dim ANFlag As Integer
Dim TCnt As Integer
Dim XCnt As Integer
Dim Temp$
Dim Templ$
Dim FRM As Integer
Dim ID As Integer
Dim DupFltr As Integer
Dim PID(15) As Integer
Dim DpSkp As Integer
Dim pSLIP As Integer
Dim G As Integer
Dim I As Integer
Dim K As Integer
Dim N As Integer
Dim P As Integer
Dim FENDS$
Dim ESC$
Dim TFENDS
Dim TESC$
Dim PktHdr$
Dim J As Integer
Dim Q As Integer
Dim RPkt$
Dim R2PktS$
Dim ASFlag As Integer
Dim NAFlag As Integer
Dim InDel!
Dim PCnt As Integer
Dim ShwACK As Integer
Dim TNode As Integer
Dim FNode As Integer
Dim TF As Integer
Dim ASStr$

Private Sub Form Load ()
‘"'initialize variables:

Combata$ = “”
ComTime! = 0

Copyright (c) 2000-2002, RF Monolithics, Inc.
For experimental use with the RFM DR1200A-DK and DR1201A-DK
and DR1300A-DK ASH Transceiver Virtual Wire (R)

Check www.rfm.com for latest software updates

See RFM Virtual Wire(r) Development Kit Warranty & License for terms of use
Tutorial software - NO representation is made that this software

Development Kits

45

P L R N

com input string

com input reference time
keystroke input buffer
send TX message flag

send next TX packet flag
keyboard input string

SLIP encoded input string
transmit message string
transmit packet string
packet transfer flag
ACK/NAK flag

TX timeout counter

TX transfer retry counter
temp string buffer

templ string buffer

RX From address

RX packet ID

duplicate RX filter flag
packet ID array (dup/skip detector)
dup/skip status

SLIP pointer

ID compare

general purpose index/counter
SLIP encoded packet length
keyboard byte counter

TX packet ID #, 1 - 7

SLIP framing character
SLIP escape character

SLIP transpose frame

SLIP transpose escape
packet header

FENDS string position
RPktS$ length

RX message FIFO string

RX message display string
AutoSend enable flag
AutoSend next message flag
delay for com input

packet TX tries counter
show ACK/NAK flag

To node numeric value

From node numeric value
To/From node numeric value
AutoSend string

clear string
clear reference time

[FRIF M.

3
>
j
=
)

Q

I
(@]

=
Il

FENDS = Chr$(192)

ESCS$ = Chr$(219)

TFENDS = Chrs$ (220)

TESC$ = Chr$(221)

PktHdr$ = Chrs$ (34)

J =20

0 =0

RPkt$ — W

R2Pkt$ = V7

ASFlag = 0

NAFlag 0

PCnt =

ShwACK

TNode =

FNode =

TF = 34

For B = 0 To 15
PID(B) = -1

Next B

ol

1
2
2

ASStr$ = “**Auto Test Message**” & vbCrLf

Forml.Left = (Screen.Width - Forml.Width)
Forml.Top = (Screen.Height - Forml.Height)
Textl.BackColor = QBColor (0)
Textl.ForeColor = QBColor (15)
Textl.FontSize = 10

Text2.BackColor = QBColor (0)
Text2.ForeColor = QBColor (15)
Text2.FontSize = 10

MSComml .CommPort 1
MSComml.Settings = “19200,N,8,1"
MSComml .RThreshold = 0
MSComml.InputLen = 0
MSComml.PortOpen = True
InDel! = 0.1

StatusBarl.Panels (4) .Text = “Keyboard Active”

ProgressBarl.Min = 0
ProgressBarl.Max = 240

Show

Textl.Text = “**TX Message Window**” & vbCrLf
Textl.Text = Textl.Text & “**Set for Node 2 & 2**”

& vbCrLf & vbCrLf
Textl.SelStart = Len (Textl.Text)

Text2.Text = “**RX Message Window**” & vbCrLf

Text2.SelStart = Len (Text2.Text)
Randomize

Timerl.Interval = 300
Timerl.Enabled = True

End Sub

clear keystroke buffer
clear TX message flag
clear next TX packet flag
clear TX packet string
clear SLIP encoded string
clear TX message string
clear send packet string
clear transfer flag

clear ACK/NAK flag

clear TX timeout counter
clear transfer counter
clear temp string buffer
clear 2nd temp string buffer
set RX From to O

set RX packet ID to O
clear duplicate filter
clear SLIP pointer

clear ID compare

clear index/counter

clear SLIP packet length
clear keyboard byte counter

set packet
initialize
initialize
initialize
initialize

ID to 3

SLIP framing character
SLIP escape character
SLIP transpose frame
SLIP transpose escape

P P L L P

P P

P

set To/From default = 2/2
clear string position
clear string length

clear RX FIFO string
clear RX display string
clear AutoSend flag

clear next AutoSend flag
clear TX tries counter
set show ACK/NAK flag

set To node default = 2
set From node default = 2
set TF default = 34

set PID array elements = -1

default AutoSend message

center form left-right
center form top-bottom
black background

white letters

10 point font

black background

white letters

10 point font

initialize com port

at 19.2 kbps

poll only, no interrupts

read all bytes

open com port

initialize get com delay at 100 ms

keyboard active status message
progress bar min number of TX bytes
progress bar max number of TX bytes

show form
1st line of TX start up message

2nd line of TX start up message
put cursor at end of text

RX start up message

put cursor at end of text

initialize random # generator

300 ms timer interval
start timer

[FRIF M.

Private Sub Timerl Timer ()
If ANFlag = 1 Then
Call Xfer
End If
If MSComml.InBufferCount > 0 Then
Call RxPkt
End If
If TXFlag = 1 Then
If TNFlag = 1 Then
Call SndPkt
End If
End If
If ASFlag = 1 Then
If TXFlag = 0 Then
Call ASPkt
End If
End If
End Sub

Public Sub RxPkt ()
Call InCom
Call ShowPkt
End Sub

Public Sub InCom()
On Error Resume Next
ComTime! = Timer
Do Until Abs (Timer - ComTime!) > InDel!
Do While MSComml.InBufferCount > 0
ComData$ = ComData$ & MSComml.Input
Loop
Loop
End Sub

Public Sub ShowPkt ()
RPkt$ = RPkt$ & ComData$
ComData$ = “”
Do
0 Len (RPktS)
J = InStr(l, RPktS$S, FENDS)
If (J < 2) Then
RPktS$ = Right$ (RPktS, (Q - J))
Else
R2Pkt$ = Left$ (RPktS, (J - 1)
RPktS$ = Right$ (RPktS, (Q - J))

If Len(R2Pkt$) = 1 Then
If (R2Pkt$ = Chr$(255)) Then
TFlag = 0

If ShwACK = 1 Then
Call LenTrap
Textl.SelStart = Len (Textl.Text)
Textl.SelText = “<Xfer on try ”
& Str(XCnt + 1) & “> 7
End If
R2Pkt$ = V7
End If
ElseIf Len (R2Pkt$) = 2 Then
ANFlag = 0
NAFlag = 0
TNFlag = 1
Temp$ = Str((Asc(Left$ (R2Pkt$, 1)) And &HF))

Templ$ = Str((Int(Asc(Mid$ (R2PktS, 2, 1)) / 16))

And &H7)
If (Asc(Right$ (R2Pkt$, 1)) And &H80) = 128 Then
PCnt = (Asc(Right$ (R2Pkt$, 1)) And &HF)

If ShwACK = 1 Then
Call LenTrap
Textl.SelStart = Len (Textl.Text)
Textl.SelText = “<ACK from N”

& Temp$ & “ P” & Templ$ & “ on ”
& Str(PCnt) & “">” & vbCrLf
End If
R2Pkt$ = V7
Else

If ShwACK = 1 Then
Call LenTrap
Textl.SelStart = Len (Textl.Text)
Textl.SelText = “<NAK from N” _
& Temp$ & P” & Templ$ & “>” & vbCrLf
End If

47

PR

P

if ACK/NAK flag set
call Xfer (detect switch OFF, etc.)

if com input buffer has bytes
call RxPkt

if TX message flag set
and next TX packet flag set
call SndPkt

if AutoSend flag set
and TX message flag clear
call AutoSend

InCom gets RX message bytes
ShowPkt shows RX message bytes

set up error handler

get current time

get bytes for InDel! interval
while bytes are in com buffer
put them in ComData$

add ComData$ bytes to RPkt$ FIFO
and clear ComData$

do until FENDS$s are gone

Q is RPkt$ packet length

find position of next FENDS$

if FENDS is in the first position
just delete it

else

R2Pkt$ what’s left of this FENDS$
RPkt$ what’s right of this FEND$
only PAC is a 1 byte message

if PAC byte

reset transfer flag

if show ACK/NAK flag set

manage textbox memory

put cursor at end of text

show try number for transfer
and clear R2Pkt$

only ACK/NAK are 2 byte messages
reset ACK/NAK flag

reset next AutoSend flag

set next TX packet flag

get From address

get packet ID number

if ACK bit set

get ACK retry number

if show ACK/NAK flag set
manage textbox memory

put cursor at end of text

show ACK From, ID and retry number
and clear R2Pkt$

if show ACK/NAK flag set

manage textbox memory

put cursor to end of text

show NAK received

[FRIF M.

R2Pkts = V7

End If
ElseIf Len (R2Pkt$) > 2 Then
Do
pSLIP = InStr (R2Pkt$, (ESCS & TFENDS))
If pSLIP <> 0 Then
K = Len (R2PktS)
If K >= (pSLIP + 2) Then
R2Pkt$ = Left$ (R2Pkt$, (pSLIP - 1)) & FENDS
& Mid$ (R2Pkt$, (pSLIP + 2))
Else
R2Pkt$ = Left$ (R2Pkt$, (pSLIP - 1)) & FENDS
End If
Else
Exit Do
End If
Loop
Do
pSLIP = InStr (R2Pkt$, (ESC$ & TESCS))
If pSLIP <> 0 Then
I = Len (R2PktS$)
If I >= (pSLIP + 2) Then
R2PktS = Left$ (R2Pkt$S, (pSLIP - 1)) & ESCS _
& Mid$ (R2Pkt$, (pSLIP + 2))
Else
R2Pkt$ = Left$ (R2Pkt$, (pSLIP - 1)) & ESCS
End If
Else
Exit Do
End If
Loop
FRM = Asc(Left$ (R2PktS$S, 1)) And &HF
ID = Asc(Mid$ (R2Pkt$, 2, 1)) And &H7
Call ChkPkt
If DpSkp <> 0 Or DupFltr = 0 Then
If ShwACK = 1 Then
Temp$ = Str (FRM)
Templ$ = Str (ID)
R2Pkt$ = Right$ (R2Pkt$, (Len(R2Pkt$) - 2))
If Right$ (R2Pkt$, 2) = vbCrLf Then
R2Pkt$ = Left$ (R2Pkt$, (Len (R2Pkt$) - 2))
ElseIf Right$ (R2Pkt$, 1) = Chr$(13) Then
R2Pkt$ = Left$ (R2Pkt$, (Len(R2Pkt$) - 1)
End If
If Left$ (R2Pkt$, 1) = Chr$(10) Then
R2Pkt$ = Right$ (R2Pkt$, (Len (R2Pkt$) - 1)
End If
Call LenTrap
If DpSkp = 1 Then

Text2.SelStart =
Text2.SelText =

End If

Text2.SelStart = Len (Text2.Text)

Text2.SelText = R2PktS$ & “ <from N” _

& Temp$ & P” & Templ$ & “>” & vbCrLf

R2PktS = “”

Else

R2Pkt$ = Right$ (R2PktS,

Call LenTrap

If DpSkp = 1 Then
Text2.SelStart =
Text2.SelText = %

End If

Text2.SelStart =

Text2.SelText =

R2Pkt$ = 7

End If
End If
End If
End If
Loop Until (J = 0)
End Sub

Len (Text2.Text)
[PID Skip] ”

(Len (R2Pkt$) - 2))

Len (Text2.Text)
[PID Skip] ”

Len (Text2.Text)
R2PktS$

Public Sub ChkPkt ()
G = PID(FRM)
If G = -1 Then
DpSkp = -1
ElseIf G = ID Then
DpSkp = 0
Else

G =G+ 1

48

PR

\

\

P P P

P

PP

P

and clear R2Pkt$

other messages are > 2 bytes

decode FENDS escape sequences

find position of next ESC$ & TFENDS
if (ESC$ & TFENDS) present

if escape sequence not last bytes
replace escape sequence with FENDS$

else replace with FEND$ at end
else done

decode ESC$ escape sequences
find position of next ESC$ & TESCS
if (ESC$ & TESCS) string(s) present

if escape sequence not last bytes
replace escape sequence with ESCS$

else replace with ESC$ at end
else done

get RX packet From address
get RX packet ID

check packet for skip/dup

if not dup or dup filter off
if show ACK/NAK flag set
make From address string
make packet ID string

strip off TO/FROM and ID bytes
check for vbCrLf

remove vbCrLf if present
also check for a trailing Cr
remove Cr if present

check for a leading Lf
remove Lf if present

manage textbox memory

if skipped packet(s) detected
put cursor at end of text
show where skip(s) occurred

put cursor at end of text

show message, From, ID, new line
and clear R2Pkt$

else strip off TO/FROM and ID bytes
manage textbox memory

if skipped packet (s) detected

put cursor at end of text

show where skip(s) occurred

put cursor at end of text
show message
and clear R2Pkt$

done when there are no more FENDSs

G is last stored ID

if -1 it’s the first check
so signal no skip/dup

else if G = ID it’s a dup
signal dup

else if G <> to ID
increment G

[FRIF M.

If G > 7 Then ‘' if greater than 7

G =20 ‘' reset to 0
End If
If G = ID Then ‘' if updated G = ID
DpSkp = -1 ' signal no skip/dup
Else
DpSkp = 1 ' else signal skip
End If
End If
PID(FRM) = ID ' store current PID for next check
End Sub

Private Sub Textl KeyPress (KeyAscii As Integer)

If TXFlag = 0 Then V' if TX message flag reset
KeyIn$ = Chr$ (KeyAscii) ‘' convert keystroke to character
If KeyIn$ = Chr$(8) Then ‘' if it is a backspace from keyboard
If N > 0 Then ‘' and if keyboard byte counter > 0
TPkt$ = Left$(TPktS, (N - 1)) ‘"trim right end of packet
N=N-1 ' back up byte counter

End If

ElseIf KeyIn$ = Chr$(13) Then
TPkt$ = TPkt$ & vbCrLf
ASStr$ = TPkt$

N =0

TXFlag = 1

TNFlag = 1

StatusBarl.Panels (4) .Text = “Keyboard Locked”
Else

TPkt$ = TPkt$ & KeyIn$

N=DN+1
End If

If (N = 238) Then
TPkt$ = TPkt$ & vbCrLf
ASStr$ = TPkt$
Textl.SelStart = Len (Textl.Text)
Textl.SelText = KeyIn$ & vbCrLf
KeyAscii = 0

PR

else if it is a Cr

add vbCrLf to TX packet
update AutoSend string
reset keyboard byte counter
set TX message flag

set next TX packet flag
show keyboard locked

else add byte to TX packet
increment byte counter

if keyboard byte counter is 238
add vbCrLf to TX message

update AutoSend string

place cursor at end

show key input and vbCrLf
block double key display

N =20 reset keyboard byte counter
TXFlag = 1 set TX message flag
TNFlag = 1 set next TX packet flag
StatusBarl.Panels (4) .Text = “Keyboard Locked” show keyboard locked
End If
Call LenTrap ' manage textbox memory
Else
KeyAscii = 0 ‘" block keystroke if TX flag set
End If
End Sub

Public Sub SndPXkt ()

If TNFlag = 1 Then

If TPkt$ <> “” Then
L = Len (TPkt$)
For I =1 To L
Temp$ = Mid$ (TPkt$, I, 1)
If Temp$ = FEND$ Then
TSPkt$ = TSPkt$ & ESC$ & TFENDS
ElseIf Temp$ = ESC$ Then
TSPkt$ = TSPkt$ & ESCS & TESCS
Else
TSPkt$ = TSPkt$ & Temps$
End If
Next I
TXPktS = TXPktS$S & TSPktS
TPktS = 7
TSPkts = “”
End If
If Int(4 * Rnd) > 0 Then
TNFlag = 0
L = Len (TXPkt$)
If L <= 240 Then

ProgressBarl.Value = L
Else

ProgressBarl.Value = 240
End If

If L > 0 Then
If L > 24 Then
SPkt$ = Left$ (TXPkt$S, 24)
TXPkt$ = Right$ (TXPkt$, (L - 24))
Else
SPkt$ = TXPkt$
TXPkts$ = “~

49

PP - P

P

if next TX packet flag set

if TPkt$ has new bytes

get number of bytes in TPkt
for each byte in TPkt$

load byte in Temp$

if byte in Temp$ is a FENDS$
add ESCS$ & TFENDS to TSPkt$
else if byte is an ESCS

add ESC$ & TESCS to TSPkt$

else just add Temp$ byte to TSPkt$

add new message to TX FIFO
clear new message string
clear SLIP encoded string

skip 25% to allow other traffic
clear next TX packet flag

get number of bytes in TXPkt$
if less than 240 bytes

show number on TX progress bar

else cap TX progress bar at 240
if TXPkt$ holds bytes

and there are more than 24 bytes
put the first 24 bytes in SPkt$
and hold the rest in TXPkt$

else put all TXPkt$ bytes in SPkts$
and clear TXPkt$

[FRIF M.

End If

Call NxtPkt

SPkt$ = FENDS$ & PktHdr$ & Chr$(P) & SPkt$ & FENDS
MSComml.Output = SPkt$

bump packet ID number
build packet
send packet

P

TFlag = 1 set transfer flag
ANFlag = 1 set ACK/NAK flag
TCnt = 0 clear TX timeout counter
XCnt = 0 clear TX transfer retry counter

Else
TXFlag = 0 ‘ clear TX flag when all bytes sent
StatusBarl.Panels (4) .Text = “Keyboard Active” ' show keyboard active

End If

End If
End If

End Sub

Public Sub Xfer ()

TCnt = TCnt + 1 increment TX timeout counter

If TCnt > 4 Then
If TFlag = 1 Then
TCnt = 0
XCnt = XCnt + 1
If XCnt < 17 Then
MSComml.Output = SPkt$
TCnt = 0
Else
Call ReSetTX
Call LenTrap
Textl.SelStart = Len (Textl.Text)
Textl.SelText = “ <xfer fault>” & vbCrLf
End If
End If
End If
If TCnt > 64 Then
If ANFlag = 1 Then
Call ReSetTX
Call LenTrap
Textl.SelStart = Len (Textl.Text)
Textl.SelText = “ <ACK/NAK fault>"
& vbCrLf -
End If
End If

End Sub

Public Sub ReSetTX()

TFlag = 0
TXFlag
TNFlag =
ANFlag =
NAFlag
TCnt =
XCnt =
TXPktS$
SPkt$ = W

ProgressBarl.Value = 0
StatusBarl.Panels (4) .Text = “Keyboard Active”

[oNeoloNe]

ool

wrr

End Sub

Public Sub ASPkt ()

If NAFlag = 0 Then
Call GetPkt
Temp$ = TPkt$
Call LenTrap
Textl.SelStart = Len(Textl.Text)
Textl.SelText = Temp$

TXFlag = 1
TNFlag = 1
StatusBarl.Panels (4) .Text = “Keyboard Locked”
Call SndPkt
NAFlag = 1
End If
End Sub

Public Sub GetPkt ()

TPkt$ = ASStr$

End Sub

Public Sub NxtPkt ()

P=P+ 1

50

PP P P

P P

P

if trying for more than 1 second
and transfer flag still set
reset TCnt

increment transfer retry counter
if XCnt not greater than 16
resend packet

reset TX timeout counter

else reset TX after eight tries
manage textbox memory

put cursor to end of text

show transfer fault message

if more than 16 seconds

and if ACK/NAK flag still set
reset TX

manage textbox memory

put cursor to end of text

show ACK/NAK fault message

reset transfer flag
reset TX message flag
reset next TX packet flag
reset ACK/NAK flag

reset next AutoSend flag
reset TCnt

reset XCnt

clear TX message string
clear send packet string
clear progress bar

show keyboard active

if next AutoSend flag reset
get next message packet (s)
use Temp$ for local display
manage textbox memory

put cursor at end of text
add text to textbox

set TX message flag

set next TX packet flag
show keyboard locked

send via SndPkt

set next AutoSend flag

message string for AutoSend

increment packet number

[FRIF M.

If P = 8 Then
P=20
End If
End Sub

Public Sub LenTrap ()
If Len(Textl.Text) > 16000 Then
Textl.Text = 7
Textl.SelStart = Len (Textl.Text)
End If
If Len(Text2.Text) > 16000 Then
Text2.Text = “7
Text2.SelStart = Len (Text2.Text)
End If
End Sub

Private Sub mnuExit Click()
MSComml.PortOpen = False
End

End Sub

Private Sub Form Unload(Cancel As Integer)
MSComml.PortOpen = False
End

End Sub

Private Sub mnuClear Click()
Textl.Text = “7
Textl.SelStart = Len (Textl.Text)
Text2.Text = “7
Text2.SelStart = Len (Text2.Text)

End Sub

Private Sub mnuDups Click()
If DupFltr = 0 Then
DupFltr = 1
mnuDups.Checked = False
Else
DupFltr = 0
mnuDups.Checked = True
End If
End Sub

Private Sub mnuShw_Click()
If ShwACK = 1 Then

ShwACK = 0
mnuShw.Checked = False
Else
ShwACK = 1
mnuShw.Checked = True
End If
End Sub

Private Sub mnuAutoSnd Click ()
ASFlag = ASFlag Xor 1
If ASFlag = 0 Then
Call ReSetTX
Textl.ForeColor = QBColor (15)
mnuAutoSnd.Checked = False
End If
If ASFlag = 1 Then
PCnt = 0
NAFlag = 0
Textl.ForeColor = QBColor (10)
mnuAutoSnd.Checked = True
End If
End Sub

Private Sub mnuFN1 Click()
FNode = 1 -
Call BldHdr
Call RstFrmChk
mnuFN1.Checked = True
End Sub

Private Sub mnuFN2 Click()
FNode = 2
Call BldHdr
Call RstFrmChk
mnuFN2.Checked = True
End Sub

51

P -

PP P

PP

P

if packet number greater than 7
reset to 0

avoid textbox memory overflow
clear TX textbox
put cursor at end of text

avoid textbox memory overflow
clear RX textbox
put cursor at end of text

close com port
done!

close com port
done!

clear TX textbox
put cursor at end of text
clear RX textbox
put cursor at end of text

if show RX dups active
toggle to inactive
and uncheck Show RX Dups

else toggle active
and check Show RX Dups

if show ACK/NAK active
toggle to inactive
and uncheck Show ACK/NAK

else toggle active
and check Show ACK/NAK

toggle AutoSend flag
if flag reset

reset TX

make letters white
uncheck AutoSend

if flag active

clear TX tries counter
clear next AutoSend flag
make letters green

check AutoSend

from Node = 1

build new packet header
reset all From check marks
check Node 1

from Node = 2

build new packet header
reset all From check marks
check Node 2

[FRIF M.

Private Sub mnuFN3_Click()
FNode = 3
Call BldHdr
Call RstFrmChk
mnuFN3.Checked = True
End Sub

Private Sub mnuFN4 Click()
FNode = 4
Call BldHdr
Call RstFrmChk
mnuFN4.Checked = True
End Sub

Public Sub RstFrmChk ()
mnuFN1.Checked = False
mnuFN2.Checked = False
mnuFN3.Checked = False
mnuFN4.Checked = False

End Sub

Private Sub mnuTN1l Click()
TNode = 1 -
Call BldHdr
Call RstToChk
mnuTN1l.Checked = True
End Sub

Private Sub mnuTN2 Click()
TNode = 2
Call BldHdr
Call RstToChk
mnuTN2.Checked = True
End Sub

Private Sub mnuTN3 Click()
TNode = 3
Call BldHdr
Call RstToChk
mnuTN3.Checked = True
End Sub

Private Sub mnuTN4 Click()
TNode = 4
Call BldHdr
Call RstToChk
mnuTN4.Checked = True
End Sub

Public Sub RstToChk ()
mnuTNl.Checked = False
mnuTN2.Checked = False
mnuTN3.Checked = False
mnuTN4.Checked = False

End Sub

Public Sub BldHdr ()
TF = (16 * TNode) + FNode
PktHdr$ = Chr$ (TF)

End Sub

5.3 DK110K.ASM

DK110K.ASM 2002.08.01 @ 20:00 CDT

Copyright(c) 2000 - 2002, RF Monolithics,

Integrate & dump PLL (I&D) - 62.40 us tick
.NOLIST
#INCLUDE “8051.H” ; tasm 8051 include file
.LIST

P

P P

P

P P

P

P

See RFM Virtual Wire(r) Development Kit Warranty & License
Experimental software - NO representation is
made that this software is suitable for any purpose

AT89C2051 assembler source code file (TASM 3.01 assembler)
Low signal-to-noise protocol for RFM ASH transceiver

from Node = 3

build new packet header
reset all From check marks
check Node 3

from Node = 4

build new packet header
reset all From check marks
check Node 4

uncheck From Node
uncheck From Node
uncheck From Node
uncheck From Node

SwWw N

To Node = 1
build new packet header
reset all To check marks
check Node 1

To Node = 2
build new packet header
reset all To check marks
check Node 2

To Node = 3
build new packet header
reset all To check marks
check Node 3

To Node = 4
build new packet header
reset all To check marks
check Node 4

uncheck To Node
uncheck To Node
uncheck To Node
uncheck To Node

B w N

TF is numeric To/From node address
Chr$ (TF) is To/From packet header

for terms of use

[FRIF M.

; constants:

ITMOD .EQU
ITICK .EQU
ISMOD .EQU
IBAUD .EQU
ISCON .EQU
RMPT .EQU
RMPW .EQU
RMPS .EQU
RMPI .EQU
RMPA .EQU
RMPR .EQU
TXMB .EQU
RXMB .EQU
FEND .EQU
SOPL .EQU
SOPH .EQU
TXRO .EQU
FCSS .EQU
FCSH .EQU
FCSL .EQU
FCVH .EQU
FCVL .EQU
; stack 08H
; bit labels:
WBFLG .EQU
PLLON .EQU
RXISM .EQU
RXSMP .EQU
LRXSM .EQU
RXBIT .EQU
RXBFLG .EQU
SOPFLG .EQU
RXSFLG .EQU
RM .EQU
OKFLG .EQU
SIFLG .EQU
TSFLG .EQU
TXSMP .EQU
TXBIT .EQU
™ .EQU
TXFLG .EQU
TMFLG .EQU
TOFLG .EQU
AMFLG .EQU
ASFLG .EQU
SFLGO .EQU
SFLG1 .EQU
SFLG2 .EQU
SFLG3 .EQU
SFLG4 .EQU
SFLG5 .EQU
SFLG6 .EQU
SFLG7 .EQU
SFLGS8 .EQU
SFLGY9 .EQU
SFLGA .EQU

022H
141
080H

0FAH
050H

159
159
80
20
29
11

044H
062H
0COH
08AH
0B3H
020H

OFFH
084H
08H

O0F0H
0B8H

021H (26 bytes)

010H
011H
012H
013H
014H
015H
016H
017H
018H
019H
01AH

01BH
01CH
01DH
01EH
01FH
020H
021H
022H
023H
024H

025H
026H
027H
028H
029H
02AH
02BH
02CH
02DH
02EH
02FH

; register usage:

RO
R1
R2
R3
R4
R5
R6
R7

set timers 0 and 1 to mode 2
set timer TO for 62.40 us tick
SMOD = 1 in PCON

19.2 kbps @ 22.1184 MHz, SMOD = 1
UART mode 1

PLL ramp top value (modulo 0 to 159)
PLL ramp reset (wrap) value

PLL ramp switch wvalue

PLL ramp increment value

PLL 5% advance increment value (20 + 9)
PLL 5% retard increment value (20 - 9)

TX message buffer start address
RX message buffer start address
FEND framing character (192)
SOP low correlator pattern

SOP high correlator pattern

TX retry timer count

FCS seed

FCS high XOR mask

FCS low XOR mask

FCS valid high byte pattern
FCS valid low byte pattern

warm boot flag (future use)
RX PLL control flag

RX inverted input sample
RX input sample

last RX input sample

RX input bit

RX input bit flag

SOP detect flag

RX symbol flag

RX FCS message bit

RX FCS OK flag

serial in active flag
output TX sample flag

TX output sample

TX message bit

TX FCS message bit

TX active flag

TX message flag

get message time out flag
AutoSend message flag
AutoSend active flag

spare flag
spare flag
spare flag
spare flag
spare flag
spare flag
spare flag
spare flag
spare flag
spare flag
spare flag

OO0 JdO U WN RO

RX data pointer
TX data pointer
PLL ramp buffer
RX FCS buffer A
not used

TX FCS buffer A
TX FCS buffer B
RX FCS buffer B

53

[FRIF M.

; byte labels:

BOOT .EQU
RXID .EQU
RXBL .EQU
RXBH .EQU
RXBB .EQU
RMDC .EQU
RMBIC .EQU
RMBYC .EQU
RMFCS .EQU
RMSBC .EQU
RMLPC .EQU
RMFCC .EQU
TMFECC .EQU
TXSMC .EQU
TMBIC .EQU
TMBYT .EQU
TMBYC .EQU
TXSL .EQU
TXSH .EQU
TMFECS .EQU
TXTL .EQU
TXTH .EQU
BUFO .EQU
BUF1 .EQU
BUF2 .EQU
BUF3 .EQU
BUF4 .EQU
BUFS5 .EQU
BUF6 .EQU
BUF7 .EQU
BUF8 .EQU
; I/0 pins:

MAX .EQU
RXPIN .EQU
TXPIN .EQU
PTT .EQU
PCRCV .EQU
RFRCV .EQU
RXI .EQU
IDO0 .EQU
ID1 .EQU
ID2 .EQU
ID3 .EQU

; start of code:

reset:

t isr:

s isr:

start:

main:

mnO:

.ORG
SETB
AJMP

.ORG
ACALL
RETI

.ORG
ACALL
CLR
CLR
RETI

.ORG
ACALL

JNB
CLR
ACALL
SETB
ACALL
JNB
ACALL

022H

026H
027H
028H
029H
02AH
02BH
02CH
02DH
02EH
02FH
030H

031H
032H
033H
034H
035H
036H
037H
038H
039H
03AH

03BH
03CH
03DH
03EH
03FH
040H
041H
042H
043H

P1.6

P3.
P3.
P1l.

~ W N

P3.
P3.
P3.

SO

P1l.
P1.
P1.
P1l.

g W N

00H
WBFLG
start

0BH
tick

023H
srio

RI

040H
setup

AMFLG, mn0
PCRCV

do_as

PCRCV

rxsop
SOPFLG, main
do_rx

1st byte of flags

RX integrate & dump buffer

RX low buffer, SOP correlator etc.
RX high buffer, SOP correlator etc.

RX symbol decode byte buffer
RX symbol decode loop counter

RX symbol decode index pointer

RX message byte counter

RX FCS byte buffer

RX symbol bit counter

RX message loop counter

RX message FCS counter, etc.

TX timer & loop counter

TX output sample counter

TX message bit counter

TX message byte buffer

TX message byte counter

TX message symbol low buffer
TX message symbol high buffer
TX FCS byte buffer

TX timer low byte

TX timer high byte

spare buffer
spare buffer
spare buffer
spare buffer
spare buffer
spare buffer
spare buffer
spare buffer
spare buffer

OoJoUudbd W EFE O

Maxim 218 power (on = 1)

RX input pin (inverted data)
TX output pin (on = 1)
transmit enable (TX = 0)

PC (host) input LED (on = 0)
RX FCS OK LED (on = 0)

RX activity LED (on = 0)
jumper input bit (dot end)

0
jumper input bit 1
jumper input bit 2
jumper input bit 3

hardware reset
set warm boot flag
jump to start

timer 0 interrupt vector
sampling tick subroutine
interrupt done

serial interrupt vector
serial I/0 subroutine

clear TI (byte sent) flag
clear RI (byte received) flag
interrupt done

above interrupt code space
initialization code

skip if AutoSend idle
else turn PCRCV LED on
do AutoSend

turn PCRCV LED off

do RX SOP detect

if not SOP loop to main
else do RX message

54

[FRIF M.

mn_d:

do rx:

rx0:

rx_d:

tick:

ticO:

ticl:

tic2:

tick d:

pll:

pll0:

plll:

pll2:

pll3:

plld:

pll5:

pllé6:

AJMP

CLR
ACALL
CLR
ACALL
JNB
ACALL
ACALL
SETB
CLR
CLR
SETB
RET

PUSH
PUSH

MOV
JNB
MOV

MOV
MOV
DEC
JNB
ACALL
JNB
INC
MOV
CJINE
CLR
MOV
JNB
INC

INZ
INC
MOV
CLR
SUBB
JINZ
SETB
CLR

MOV
POP
POP
RET

MOV
MOV
MOV

MOV
JNC
INC
JNB
CPL
JNC
MOV
CLR
SUBB

MOV
ADD
MOV
AJMP
MOV
ADD
MOV
AJMP
MOV
ADD
MOV
CLR
MOV
SUBB

MOV
CLR

main

ES
rxmsg
PLLON
rxfcs
OKFLG, rx0
rxsnd
rxrst
PLLON
TI

RI

ES

PSwW

ACC
C,RXPIN
RXISM, C
TSFLG, ticO
A, TXSMC
ticO

C, TXBIT
TXPIN,C
TXSMC
PLLON, ticl
pll

TOFLG, tic2
TMFECC

A, TMFCC

A, #50,tic2
TOFLG
TMFCC, #0

ASFLG, tick d

TXTL
A, TXTL
tick d
TXTH

A, TXTH
C

A, #TXRO
tick d
AMFLG
A
TXTL, A
TXTH, A
ACC

PSW

C, RXSMP
LRXSM, C
C,RXISM
c
RXSMP, C
pl1l0
RXID
LRXSM, plll
c

pll4
A,R2

c

A, #RMPS
pll3
A,R2

A, #RMPA
R2,A
pll5
A,R2

A, #RMPR
R2,A
pll5
A,R2

A, #RMPI
R2,A

c

A,R2

A, #RMPT
pllD
A,R2

c

and loop to main

deactivate serial interrupts
decode RX message

idle RX PLL

test RX message FCS

reset 1if FCS error

else send RX message to host
reset for next RX message
enable RX PLL

clear TI flag

clear RI flag

activate serial interrupts
RX done

push status

push accumulator

read RX input pin

store as inverted RX sample
skip if TX sample out idle
else get sample count

skip if 0

else load TX bit

into TX output pin
decrement sample count
skip if PLL idle

else run RX PLL

skip if get message timeout idle

else bump timeout counter
get counter

skip if counter <> 50 (5.2 ms)

else reset time out flag
reset counter

done if AutoSend idle
else bump TX timer low
load TX timer low

done if no rollover

else bump TX timer high
load timer

clear borrow

subtract TX retry count
if <> 0 done for now
else set AM message flag
clear A

clear TX timer low

clear TX timer high

pop accumulator

pop status

tick done

load RX sample

into last RX sample
get inverted RX sample
invert

and store

if <> 1 jump to pll0
else increment I&D

if last sample 1
invert current sample
if no edge jump to pll4
else get PLL value
clear borrow

subtract ramp switch value
if < 0 then retard PLL
else get PLL value

add (RMPI + 5%)

store PLL value

and jump to pll5

get PLL value

add (RMPI - 5%)

store PLL value

and jump to pll5

get PLL value

add ramp increment
store new PLL value
clear borrow

get PLL ramp value
subtract ramp top

if < 0 don’t wrap

else get PLL value
clear borrow

55

[FRIF M.

pll7:

pll8:

pllo:

pllA:

pllB:

plicC:
pllD:
pll d:

rxsop:

sop_d:
rXmsg:

rxml:

rxm2 :

rxm3:

rxmé:

rxmb:

rxmoé :

rxm7 :

SUBB
MOV
CLR
MOV
SUBB
JNC
CLR
SETB

AJMP
SETB
SETB
MOV
JB
MOV
CLR
RRC

SETB
MOV
MOV
RRC
MOV
AJMP
MOV
CLR

JNB
SETB
MOV
INC
MOV
CJINE
MOV
MOV
SETB
AJMP
CLR
RET

JNB
CLR
MOV
CJINE

CJINE
CLR
MOV
MOV
MOV
CLR
SETB

RET

A, #RMPW
R2,A

C

A,RXID

A, #5

pll7
RXBIT
RXBFLG
RXID, #0
plls8
RXBIT
RXBFLG
RXID, #0
SOPFLG, pllA
A, RXBH

C

A
RXBIT,pll9
ACC.7
RXBH, A

A, RXBL

A

RXBL, A
pll d

A, RXBL

C

A
RXBIT,pllB
ACC.5
RXBL, A
RMSBC

A, RMSBC
A,#6,pllC
RXBB, RXBL
RMSBC, #0
RXSFLG
pll d
RXBFLG

RXBFLG, sop_d
RXBFLG

A, RXBL

A, #SOPL, sop_d
A, RXBH

A, #SOPH, sop_d
A

RXBL, A
RXBH, A
RMSBC, A
RXSFLG

SOPFLG

RXI

RXSFLG, rxmsg
RXSFLG
DPTR, #smbl
RMDC, #16
RMBIC, #0
A,RMBIC

A, QA+DPTR
A, RXBB
rxm3

RMBIC
RMDC, rxm2
A,RMBIC

A

RXBH, A
RXSFLG, rxm4
RXSFLG
DPTR, #smbl
RMDC, #16
RMBIC, #0
A,RMBIC

A, @A+DPTR
A, RXBB
rxm’7

RMBIC
RMDC, rxm6
A,RMBIC

subtract reset value
and store result

clear borrow

get I&D buffer

subtract 5

if I&D count => 5 jump to pll7
else RX bit = 0 for I&D count <
set new RX bit flag
clear the I&D buffer
and jump to pll8

RX bit = 1 for I&D count => 5
set new RX bit flag
clear the I&D buffer
skip after SOP detect
else get RXBH

clear carry

rotate right

if bit = 0 jump to pll9
else set 7th bit

store RXBH

get RXBL

shift and pull in carry
store RXBL

done for now

get RXBL

clear carry

shift right

if bit = 0 jump to pllB
else set 5th bit

store RXBL

bump bit counter

get counter

if <> 6 jump to pllC
else get symbol

reset counter

set symbol flag

done

clear RXBFLG

PLL done

done if no RX bit flag
else clear RX bit flag
get low RX buffer

done if <> SOPL

else get high RX buffer
done if <> SOPH

else clear A

clear RX low buffer
clear RX high buffer
clear RX symbol bit counter
clear RX symbol flag
set SOP detected flag
RXI LED on

SOP detect done

wait for RX symbol flag

clear RX symbol flag

point to RX symbol decode table
16 symbol decode table entries
index into symbol table

load index into A

get table entry

XOR to compare with RXBB

exit loop with decoded nibble
else bump index

and try to decode again

get decoded nibble

swap to high nibble

into RXBH (low nibble is high)
wait for symbol flag

clear flag

point to symbol decode table
16 symbol decode table entries
reset symbol table index

load index into A

get table entry

XOR to compare with RXBB

exit loop with decoded nibble
else bump index

and try to decode again

get decoded nibble

56

5

[FRIF M.

rxm8:

rxm d:

rxfcs:
rxf0:

rxf d:
rxsnd:

rxsl:
rxs2:

rxs3:

rxs _d:

rxrst:

rxr_d:

b rfcs:
brf0:

brfl:

brf2:
brfcs_d:

ORL
SWAP
MOV
MOV
CJINE
MOV
ANL
MOV

CLR
SUBB

MOV
MOV
INC
DJINZ
MOV
SETB
RET

MOV
MOV
INC
ACALL
DJINZ
ACALL

CLR
DEC
DEC
MOV
MOV
CLR
MOV
JNB

INC
DJINZ
MOV
JNB
CLR
SETB
SETB
RET

CLR
MOV
MOV
MOV
MOV
MOV
MOV
CLR

SETB
RET

MOV
CLR
MOV
RRC
MOV

CLR
MOV
RRC
MOV
MOV
RRC
MOV
JNB

JNC
MOV
XRL
MOV
MOV
XRL
MOV
DJINZ
RET

A, RXBH
A
RXBH, A
@RO, RXBH

RO, #RXMB, rxm8

A, RXBH
A, #63
RMBYC, A
RMFCC, A
C

A, #28
rxm8
RMBYC, #4
RMFCC, #4
RO
RMFCC, rxmsg
RO, #RXMB
RXI

RMFCC, RMBYC
RMFCS, @RO
RO

b rfcs
RMFCC, rxf0
a_rfcs

PCRCV
RMBYC
RMBYC

RO, #RXMB
@RO, #FEND
TI

SBUF, @RO
TI,rxs2

TI

RO

RMBYC, rxsl
SBUF, # FEND
TI,rxs3

TI

RFRCV
PCRCV

A
RXBH, A
RXBL, A
RXBB, A
RMBYC, A
RMFCC, A
RO, #RXMB
OKFLG
SOPFLG
RXI

RMLPC, #8
C
A,RMFCS
A
RMFCS, A
RM, C

C

A,R3

A

R3,A
A,R7

A

R7,A
RM, brfl
C

brf2
A,R3

A, #FCSH
R3,A
A,R7

A, #FCSL
R7,A
RMLPC, brf0

add RXBH low

nibbles now in right order
store in RXBH

and store in RX message buffer
skip if not 1lst message byte
else get 1st byte

mask upper 2 bits

load message byte counter
and RX message loop counter
clear borrow

compare # bytes to 28

skip if < 28

else force byte counter to 4
and force loop counter to 4
bump pointer

if <> 0 get another byte
reset RX message pointer
turn LED off

RX message done

move byte count to loop counter
get next message byte
bump pointer

build FCS

loop for next byte

test FCS

RX FCS done

turn PC LED on

don’t send

the 2 FCS bytes

reset RX message pointer
replace # bytes with 1st FEND
clear TI flag

send byte

wait until byte sent
clear TI flag

bump pointer

loop to echo message

add 2nd FEND

wait until byte sent
clear TI flag

turn FCS LED off

turn PC LED off

send RX message done

clear A

clear buffer

clear buffer

clear buffer

clear rx byte count
clear loop counter
point RO to message start
clear packet OK flag
enable SOP test

RXI LED off

RX reset done

load loop count of 8

clear carry bit

load RX message byte

shift 1sb into carry

store shifted message byte

load RM with 1sb

clear carry bit

load high FCS byte

shift right

store shifted high FCS

load low FCS byte

shift and pull in bit for FCS high
store shifted low FCS

if 1sb of low FCS = 0, jump to brfl
else complement carry bit

if RM XOR (low FCS 1lsb) = 0 jump to brf2
else load high FCS

and XOR with high FCS poly

store high FCS

load low FCS

XOR with low FCS poly

store low FCS

loop through bits in message byte
done this pass

[FRIF M.

57

a rfcs: MOV A,R3 load FCS high

XRL A, #FCVH ; compare with OFOH
JNZ arf0 ; 1f <> 0 jump to arf0
MOV A,R7 ; load FCS low
XRL A, #FCVL ; else compare with OB8H
JNZ arf0 ; 1f <> 0 jump to arf0
CLR RFRCV ; else turn FCS LED on
SETB OKFLG ; set FCS OK flag

arf0: MOV R3, #FCSS ; reseed FCS high
MOV R7, #FCSS ; reseed FCS low

arfcs _d: RET RX FCS done

srio: PUSH PSw ; save
PUSH ACC ; environment
JNB TI,sr O ; skip if TI flag clear
CLR I ; else clear TI flag
sr 0: JNB RI,sr 1 ; skip if RI flag clear
CLR RI ; else clear RI flag
JNB SIFLG,sr 1 ; skip if serial in flag reset
CLR PCRCV ; else turn PC LED on
ACALL do tx ; get & TX host message
SETB PCRCV ; turn PC LED off
sr_1: POP ACC ; restore
POP PSW ; environment
RET ; serial in done
do as: CLR PLLON ; idle RX PLL
ACALL hello2 ; get AutoSend message
ACALL txfcs ; build and add FCS
ACALL txpre ; send TX preamble
ACALL txmsg ; send TX message
ACALL txrst ; reset TX
SETB PLLON ; enable RX PLL
RET ; TX message done
do tx: ACALL txget ; get TX message from host
n JNB TXFLG, do0 ; skip if TXFLG not set
CLR PLLON ; else idle RX PLL
ACALL txfcs ; build and add FCS
ACALL txpre ; send TX preamble
ACALL txmsg ; send TX message
doO: ACALL txrst ; reset TX
SETB PLLON ; enable RX PLL
RET ; TX message done
txget: MOV A, SBUF ; get byte
MOV TMBYT, A ; copy to TMBYT
XRL A, #FEND ; compare to FEND
JZ txg0 ; 1f FEND jump to txgO
AJMP txg d ; else done
txg0: MOV @R1, TMBYT ; store 1lst FEND
INC TMBYC ; bump TX byte counter
txgl: MOV TMFCC, #0 ; reset timeout counter
SETB TOFLG ; set timeout flag
CLR RI ; reset flag
txg2: JNB TOFLG, txg3 ; 1f TOFLG reset jump to txg3
JNB RI, txg2 ; else loop until next byte
CLR RI ; reset RI flag
CLR TOFLG ; reset TOFLG
AJMP txg4 ; and jump to txg4
txg3: MOV TMBYC, #2 ;7 look like null message
AJMP txg6 ; and jump to txgb6
txgd: MOV A, SBUF ;. get byte
MOV TMBYT, A ; copy to TMBYT
INC TMBYC ; bump byte counter
INC R1 ; bump pointer R1
MOV @R1, TMBYT ; store byte
MOV A, TMBYC ; load counter
CLR C ; clear carry
SUBB A, #26 ; test for 26 bytes
Jz txgb ; 1f 26 handle overflow at txgb
MOV A, TMBYT ; else load byte
CJNE A, #FEND, txgl ; 1f <> FEND loop to txgl
AJMP txgb ; else jump to txg6 on 2nd FEND
txgb: MOV @R1, #FEND ; force 2nd FEND
txg6: MOV R1, #TXMB ; reset TX message pointer
MOV A, TMBYC ; get byte count
CJINE A, #2,txg’ ; 1f <> 2 jump to txg’
MOV TMBYC, #0 ; else reset byte counter
AJMP txg d ; Jump to txg d

[FRIF M.

58

txg7:
txg d:

txfcs:

txf0:

txf d:
txpre:

txp0:
txpl:

txp2:

txp3:

txp d:

txmsqg:

txmO:

CLR
SETB
RET

INC
MOV
MOV
DEC

MOV
INC
ACALL
DJINZ
ACALL

MOVC

SWAP

MOVC
MOV
MOV
MOV
MOV
JINZ
MOV
CLR
SUBB
JNC
MOV
JINZ
MOV
CLR
SUBB

INC
INC

SIFLG
TXFLG

TMBYC

@R1, TMBYC
TMFCC, TMBYC
TMFECC
TMFCC
TMFCS, @R1
R1

b tfcs
TMFCC, txf0
a_tfcs

R1, #TXMB
TMFLG

PTT

B, #200

B, txp0
DPTR, #tstrt
B, #0

A,B

A, @A+DPTR
TMBYT, A
TMBIC, #4
TXSMC, #0
TSFLG

A, TXSMC
txp2

A, TMBIC
txp3

A,B

C

A, #11
txp d

B

A,B
A, @A+DPTR
TMBYT, A
TMBIC, #4
A, TMBYT

C

A

TXBIT,C
TMBYT, A
TMBIC
TXSMC, #8
txp2

B, #1

R1, #TXMB
A, @R1
TMBYT, A
DPTR, #smbl
A, #0FH

A, QA+DPTR
TXSL, A

A, TMBYT

A

A, #0FH

A, @A+DPTR
TXSH, A
TMBIC, #12
TXSMC, #0
A, TXSMC
txm0

A, TMBIC

C

A, #7

txml

A, TMBIC
txm2

A,B

C

A, TMBYC
txm3

R1

B

idle serial in

set TX flag

get TX message done

bytes including FCS

replace lst FEND with # bytes
move byte count to loop counter

loop count is 2 less

than # bytes including FCS

get next message byte

bump pointer
build FCS

loop for next byte

add FCS

reset TX message pointer
set TX message flag

TX FCS done

turn PTT on

load PTT delay count
loop to delay
point to TX start table

clear B

B holds table offset
load table entry

into TMBYT

load bit count

clear sample count
turn TX sample out on
get sample count

loop until sample count 0

get bit count
if <> 0 jump to txp3
else get current offset

clear carry

subtract ending offset

if 0 done

else bump byte count
get count/offset
load table entry

into TMBYT

reload bit count
get TX message byte

clear carry

shift right into carry
load next bit

(0 to 11)

store shifted message byte

decrement bit count
reload sample count

loop again

TX preamble done

count 1lst byte sent
reset TX message pointer
get 1lst TX message byte

into TMBYT

point to symbol table

clean offset

get 6-bit symbol

move to TXSL
get TMBYT

swap nibbles
clean offset

get 6-bit symbol

move to TXSH

set bit count to 12
clear sample count
get sample count

loop until sample count O

get bit count

clear carry
subtract 7

if => 7 jump to txml
else get bit count
if > 0 jump to txm2

else get current byte number

clear carry

subtract TX message byte count

if 0 done

else bump byte pointer
and bump byte counter

59

[FRIF M.

txml:

txm2 :

txm3:

txm d:

txrst:

txr d:

b tfcs:
btf0:

btfl:

btf2:
btfcs d:

a tfcs:

SETB
RET

MOV
CLR
MOV
RRC

MOV
CLR
MOV
RRC
MOV
MOV
RRC
MOV

CPL
JNC
MOV
XRL
MOV
MOV
XRL
MOV
DJINZ
RET

MOV
CPL
MOV
INC
MOV
CPL
MOV

A, QR1
TMBYT, A
DPTR, #smbl
A, #0FH

A, @A+DPTR
TXSL, A

A, TMBYT

A

DPTR, #smbl
A, #0FH

A, @A+DPTR
TXSH, A
TMBIC, #12
A, TXSL

C

A

TXBIT,C
TXSL, A
TMBIC
TXSMC, #8
txm0

A, TXSH

C

A

TXBIT, C
TXSH, A
TMBIC
TXSMC, #8
txm0
TSFLG
TXPIN

PTT

TMFLG
AMFLG

A
TMBYT, A
TMFCC, A
TXSMC, A
TXSL,A
TXSH, A
R1, #TXMB
ASFLG, txr_d
TMBYC, A
TXFLG
SIFLG

B, #8

c

A, TMFCS
A
TMFCS, A
™, C

C

A,R5

A

R5,A
A,R6

A

R6,A
TM, btfl
C

btf2
A,R5

A, #FCSH
R5,A
A,R6

A, $FCSL
R6,A
B,btf0

A,R6
A
@R1,A
R1
A,R5
A
@R1,A

get next byte

into TMBYT

point to symbol table
offset

get 6-bit symbol

move to TXSL

get TMBYT

swap nibbles

point to symbol table
clean offset

get 6-bit symbol

move to TXSH

set bit count to 12
get low TX symbol
clear carry

shift right into carry
load next bit

store shifted message byte
decrement bit count
reload sample count
loop again

get high TX symbol
clear carry

shift right into carry
load next bit

store shifted message byte
decrement bit count
reload sample count
loop again

clear TX sample out flag
clear TX out pin

turn PTT off

TX message done

clear TX message flag

clear AutoSend message flag
reset for next TX

clear TX message byte

clear TX FCS count

clear TX out count

clear TX symbol low

clear TX symbol high

point Rl to message start
skip if in AutoSend

clear TX message byte count
clear TX flag

set serial in flag active
TX reset done

load loop count of 8

clear carry bit

load TX message byte

shift 1sb into carry

store shifted message byte

load TM with 1sb

clear carry bit

load high FCS byte

shift right

store shifted high FCS

load low FCS byte

shift and pull in bit for FCS high
store shifted low FCS

if 1sb of low FCS = 0, jump to btfl
else complement carry bit

if TM XOR (low FCS 1lsb) = 0 jump to btf2
else load high FCS

and XOR with high FCS poly

store high FCS

load low FCS

XOR with low FCS poly

store low FCS

loop through bits in message byte
done this pass

load FCS (high/low switch)

1’s complement

store at end of TX message
increment TX message byte pointer
load FCS (high/low switch)

1’s complement

store at end of TX message

[FRIF M.

60

atfcs d:

setup:

tick su:

uart_su:

ser_on:
isr on:

setup d:

initr:

clr r:

ini d:

hello:

snd h:

nxt tx:

hello d:

hello2:

snd_h2:

MOV
MOV
RET

CLR
SETB
CLR

MOV
CLR
CLR
MOV
MOV
SETB
SETB
SETB
CLR

MOV
MOV
MOV
SETB
MOV
MOV
CLR
CLR

ACALL

ACALL
SETB

ACALL

RS, #FCSS
R6, #FCSS

EA
PTT
TXPIN

TMOD, #ITMOD
TRO

TFO

THO, #ITICK
TLO, #ITICK
TRO

ETO

MAX

TR1

TF1

TH1, #IBAUD
TL1, #IBAUD
PCON, #ISMOD
TR1

SCON, #ISCON
A, SBUF

A

RI

TI

hello

initr

SIFLG

c,ID0
ser_on
hello2

ES

EA

PLLON

BOOT, #1
RO, #35
B, #93

A

@QRO, A

RO

B,clr r
RO, #RXMB
R1, #TXMB
R2,A

R3, #FCSS
R5, #FCSS
R6, #FCSS
R7, #FCSS
SOPFLG
PTO

DPTR, #table
B, #12

R7, #0

A,R7

A, QA+DPTR
TI

SBUF, A
TI,nxt tx
R7

B,snd_h

DPTR, #tbl 2
R1, #TXMB
B, #8
TMBYC, #0
A, TMBYC

A, @QA+DPTR
@R1,A
TMBYC

R1

B, snd h2
R1, #TXMB
SIFLG
TXFLG

reseed FCS high
reseed FCS low
add TX FCS done

disable interrupts
turn PTT off
turn TX modulation off

set timers TO and Tl to mode 2
stop timer TO

clear TO overflow

load count for 62.40 us tick
load count for 62.40 us tick
start timer TO

unmask TO interrupt

power up Maxim RS232 converter
stop timer T1

clear Tl overflow

load baud rate count

load baud rate count

SMOD = 1 for baud rate @ 22.1184
start baud rate timer T1
enable UART mode 1

clear out UART RX buffer

clear A

clear get flag

clear TI flag

send start up message
initialize TX & RX

set serial in flag active

read IDO

skip if no IDO Jjumper

else do AutoSend

enable serial ISR

enable interrupts

activate RX PLL

setup done

warm boot (don’t reset WBFLG)
starting here

for 93 bytes

clear A

clear RAM

bump RAM pointer

loop again

load RX buffer pointer
load TX buffer pointer
clear R2

seed R3

seed R5

seed R6

seed R7

clear SOPFLG

tick is 1st priority
done

point to table

load loop count in B
R7 has 1lst table entry
move table offset into A
load table byte

reset TI flag

send byte

wait until sent

bump index

loop to send message
done

point to table 2

reset TX buffer pointer
loop count for 8 bytes
offset for 1lst table entry
move table offset into A
load table byte

into TX buffer

increment TMBYC
increment R1

loop to load message
reset TX pointer

reset serial input

set TX flag

61

MHz

[FRIF M.

SETB ASFLG ; set AutoSend flag
helo2 d RET

; tables:
tstrt: .BYTE 10 ; preamble/SOP table
BYTE 10 ; table data
BYTE 10 ; table data
BYTE 10 ; table data
BYTE 10 ; table data
BYTE 10 ; table data
BYTE 10 ; table data
BYTE 10 ; table data
BYTE 10 ; table data
BYTE 8 ; table data
BYTE 3 ; table data
BYTE 11 ; table data
smbl: .BYTE 13 ; 4-to-6 bit table
BYTE 14 ; table data
BYTE 19 ; table data
BYTE 21 ; table data
BYTE 22 ; table data
BYTE 25 ; table data
BYTE 26 ; table data
BYTE 28 ; table data
BYTE 35 ; table data
BYTE 37 ; table data
BYTE 38 ; table data
BYTE 41 ; table data
BYTE 42 ; table data
BYTE 44 ; table data
BYTE 50 ; table data
BYTE 52 ; table data
BYTE 00 ; overflow
table: .BYTE 192 ; start up message
BYTE v ; table data
BYTE ‘D’ ; table data
BYTE ‘K’ ; table data
BYTE ‘17 ; table data
BYTE ‘1’ ; table data
BYTE ‘0’ ; table data
BYTE ‘K’ ; table data
BYTE A ; table data
BYTE v ; table data
BYTE v ; table data
BYTE 192 ; table data
tbhl 2: .BYTE 192 ; table data
BYTE ‘H' ; table data
BYTE ‘e ; table data
BYTE ‘17 ; table data
BYTE ‘17 ; table data
BYTE ‘o’ ; table data
BYTE A ; table data
BYTE 192 ; table data
.END ; end of source code
5.4 V110T05B.FRM
VERSION 5.00
Object = “{648A5603-2C6E-101B-82B6-000000000014}#1.1#0"; ”MSCOMM32.0CX"
Object = “{F9043C88-F6F2-101A-A3C9-08002B2F49FB}#1.2#0"; ”COMDLG32.0CX"
Begin VB.Form Forml
Caption = “V110T05B Terminal Program for DK110K Protocol”
ClientHeight = 4335
ClientLeft = 165
ClientTop = 735
Clientwidth = 6375
BeginProperty Font
Name = “MS Sans Serif”
Size = 9.75
Charset = 0
Weight = 400
Underline = 0 ‘False
Italic = 0 ‘False

[FRIF M.

62

Strikethrough = 0 ‘False

EndProperty
LinkTopic = “Forml"
MaxButton = 0 ‘False
ScaleHeight = 4335
ScaleWidth = 6375
StartUpPosition = 3 ‘Windows Default
Begin MSComDlg.CommonDialog CommonDialogl
Left = 240
Top = 3600
_ExtentX = 688
_ExtentY = 688
_Version = 393216
End

Begin VB.TextBox Text2
BeginProperty Font

Name = “System”
Size = 9.75
Charset = 0
Weight = 700
Underline = 0 ‘False
Italic = 0 ‘False
Strikethrough = 0 ‘False
EndProperty
Height = 2052
Left = 120
Locked = -1 1‘True
MultiLine = -1 1“True
ScrollBars = 2 ‘“Wertical
TabIndex = 1
Top = 0
Width = 6135
End
Begin VB.Timer Timerl
Left = 720
Top = 3600
End
Begin MSCommLib.MSComm MSComml
Left = 1200
Top = 3600
ExtentX = 794
_ExtentY = 794
_Version = 393216
DTREnable = -1 1‘True
End
Begin VB.TextBox Textl
BeginProperty Font
Name = “System”
Size = 9.75
Charset = 0
Weight = 700
Underline = 0 ‘False
Italic = 0 ‘False
Strikethrough = 0 ‘False
EndProperty
Height = 2052
Left = 120
MultiLine = -1 1“True
ScrollBars = 2 ‘“Wertical
TabIndex = 0
Top = 2160
Width = 6135
End
Begin VB.Menu mnuFile
Caption = “gFile”
Begin VB.Menu mnuClear
Caption = “&Clear”
End
Begin VB.Menu mnuAutoSnd
Caption = “&AutoSend”
End
Begin VB.Menu mnuExit
Caption = “E&xit”
End
End
End
Attribute VB Name = “Forml"

Attribute VB GlobalNameSpace = False
Attribute VB Creatable = False

63

[FRIF M.

Attrib
Attrib

V110
See
Expe

made that this software is suitable for any purpose

Copy

and
For
Chec
Comp

' glob
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

Privat

‘initi
ASMs
ComD
ComT
FEND
J =
Q=
RPkt
R2Pk
KeyI
Pkt$
Temp
N =
TXF1
TXCn
TXTO
ASF1

Form
Form
Text
Text
Text
Text
Text
Text

MSCo:
MSCo
MSCo!
MSCo:
MSCo:
InDe

Rand

Show
Text
Text
Text
Text

Time
Time

End Su

ute VB PredeclaredId = True
ute VB Exposed = False

TO5B.FRM, 2002.08.07 @ 08:00 CDT

RFM Virtual Wire(r) Development Kit Warranty & License for terms of use

rimental software - NO representation is

right(c) 2000 - 2002, RF Monolithics, Inc.

DR1300-DK ASH Transceiver Virtual Wire (R) Development

protocol software version DK110K.ASM
k www.rfm.com for latest software updates
iled in Microsoft Visual Basic 6.0

Al
\
Al
A}
' For experimental use with the RFM DR1200-DK and DR1201-DK
Al
A}
\
\

al variables
ASMsg$

CombData$

ComTime!

InDel!

FENDS

J As Integer

Q As Integer
RPkt$

R2Pkt$

KeyIn$

Pkt$

Temp$

N As Integer
TXFlag As Integer
TXCnt As Integer
TXTO As Integer
ASFlag As Integer

e Sub Form Load()

alize variables:

g$ = “12345678901234567890" & vbCrLf
atas$ =

ime! =0

S = Chr$(192)

1

0

§ = w

ts — W

ng = W

— W

s = W
0

ag =0
t =0
=0
ag =0

1.Left = (Screen.Width - Forml.Width) / 2
1.Top = (Screen.Height - Forml.Height) / 2
1.BackColor = QBColor (0)

1.ForeColor = QBColor (15)

1.FontSize = 10

2.BackColor = QBColor (0)

2.ForeColor = QBColor (15)

2.FontSize = 10

mml .CommPort 1
mml.Settings = “19200,N,8,1"
mml.RThreshold = 0
mml.InputLen = 0
mml.PortOpen = True
1! =10.1

omize

1.Text = “**TX Message Window**” & vbCrLf
1.SelStart = Len (Textl.Text)

2.Text = “**RX Message Window**” & vbCrLf
2.SelStart = Len (Text2.Text)

rl.Interval = 300
rl.Enabled = True

b

64

Kits

P

P

PR

AutoSend string

string from com input
InCom timer

InCom timer delay value
packet framing character
FENDS string position
RPkt$ length

RX message FIFO string
RX message display string
keystroke input buffer
TX message string

temp string buffer

TX message byte counter
TX flag

TX try counter

TX timeout counter
AutoSend flag

center form left-right
center form top-bottom
black background

white letters

10 point font

black background

white letters

10 point font

initialize com port 1

at 19.2 kbps

poll only, no interrupts
read all characters

open com port

initialize delay at 100 ms

initialize random number generator

show form

display TX start up message
put cursor at end of text
display RX start up message
put cursor at end of text

300 ms timer interval
start timer

[FRIF M.

Private Sub Timerl Timer ()
If TXFlag = 1 Then
Call DoTX
End If
If MSComml.InBufferCount > 0 Then
Call RxPkt
End If

If ASFlag = 1 Then
Call ASPkt
End If
End Sub

Public Sub RxPkt ()
Call InCom
Call ShowPkt
End Sub

Public Sub InCom()
On Error Resume Next
ComTime! = Timer
Do Until Abs (Timer - ComTime!) > InDel!
Do While MSComml.InBufferCount > 0
ComData$ = ComData$ & MSComml.Input
Loop
Loop
End Sub

Public Sub ShowPkt ()
RPkt$ = RPkt$ & ComData$
ComData$ = “”
Do
Q = Len (RPktS)
J InStr (1, RPkt$, FENDS)
If (J < 2) Then
RPkt$ = Right$ (RPkt$S, (Q - J))
Else
R2Pkt$ = Left$ (RPktS, (J - 1)
RPkt$ = Right$ (RPkt$S, (Q - J))
If R2Pkt$ <> ™ ACK” Then
Call LenTrap
Text2.SelStart = Len (Text2.Text)
Text2.SelText = R2Pkt$
Call SndACK
R2Pkt$ = 7
ElseIf R2Pkt$ = “ ACK” Then
Call LenTrap
Textl.SelStart = Len (Textl.Text)
Textl.SelText = “ <OK> ” & vbCrLf
TXFlag = 0
TXCnt = 0
TXTO = 0
Pkt $ = W
R2Pkt$ = 7
End If
End If
Loop Until (J = 0)
End Sub

Private Sub Textl KeyPress (KeyAscii As Integer)
If TXFlag = 0 Then
KeyIn$ = Chr$ (KeyAscii)
If KeyIn$ = Chr$(8) Then
If N > 0 Then
Pkt$ = Left$ (Pkt$, (N - 1)
N=DN-1
End If
ElseIf KeyIn$ = Chr$(13) Then
Pkt$ = Pkt$ & vbCrLf
ASMsg$ = Pkt$
Pkt$ = FEND$ & Pkt$ & FENDS
N =0
TXFlag = 1
TXCnt = 0
TXTO = 0
Else
Pkt$ = Pkt$ & KeyIn$
N =N+ 1
End If
If (N = 23) Then
ASMsg$ = Pkt$

PP

P L L

P

if TX flag set
send/resend/NAK

if bytes in input buffer
call RxPkt

if AutoSend flag set
call Autosend

InCom will get it
ShowPkt will show it

set up error handler

get current time

get bytes for InDel! interval
while bytes are in com buffer
put them in ComData$

add ComData$ to end of RPkt$ FIFO
clear ComData$ for next time

do until FENDS$s gone

Q is RPkt$ packet length

find position of next FENDS$

if FENDS is in the 1lst position
just delete it

else

R2Pkt$ what’s left of FENDS
RPkt$ what’s right of FENDS$

if it’s not an ACK

manage textbox memory

put cursor at end of text

show RX message

send ACK back

and clear R2Pkt$ for the next time
if it is an ACK

manage textbox memory

put cursor at end of text

show OK

reset TX flag

clear TX counter

clear TX timeout counter

clear TX packet string

and clear RPkt$

done when there are no more FENDSs

if not TX cycle

get KeyIn

if it’s a backspace from keyboard
and character counter > 0

trim right end of packet

back up character counter

else if it’s a Cr

add vbCrLf

update AutoSend message
add framing FENDs

reset N

set TX flag

clear TX try counter
clear TX timeout counter

else add character to TX message
increment character counter

if character count 23
update AutoSend message

[FRIF M.

Pkt$ = FENDS & Pkt$ & FENDS
N =0
TXFlag = 1
TXCnt = 0
TXTO = 0
End If
Call LenTrap
Else
KeyAscii = 0
End If
End Sub

Public Sub DoTX ()
If TXTO = 0 Then
TXCnt = TXCnt + 1
If TXCnt = 1 Then
Call SndPkt
TXTO = 4
ElselIf (TXCnt > 1) And (TXCnt < 7) Then
Call SndPkt
TXTO = 4 + Int(8 * Rnd)
ElseIf TXCnt >= 7 Then
Call LenTrap
Textl.SelStart = Len (Textl.Text)
Textl.SelText = “ <NAK>" & vbCrLf
TXFlag = 0
TCnt = 0
TXTO = 0
Pkt$ =
R2Pkt$ = 7
End If
Else
TXTO = TXTO - 1
End If
End Sub

Public Sub SndPXkt ()
If Pkt$ <> “” Then
MSComml.Output = Pkt$
End If
End Sub

Public Sub ASPkt ()
If TXFlag = 0 Then
Temp$ = ASMsg$
Call LenTrap
Textl.SelStart = Len (Textl.Text)
Textl.SelText = Temp$
Pkt$ = FENDS$ & ASMsg$ & FENDS
TXFlag = 1
TXCnt = 0
TXTO = 0
End If
End Sub

Public Sub SndACK ()
MSComml.Output = FENDS$ & “ ACK” & FENDS$S
End Sub

Public Sub LenTrap ()
If Len(Textl.Text) > 16000 Then
Textl.Text = 7
Textl.SelStart = Len (Textl.Text)
End If
If Len(Text2.Text) > 16000 Then
Text2.Text = “7
Text2.SelStart = Len (Text2.Text)
End If
End Sub

Private Sub Form Unload(Cancel As Integer)
MSComml.PortOpen = False
End

End Sub

Private Sub mnuAutoSnd Click()
ASFlag = ASFlag Xor 1
If ASFlag = 0 Then
mnuAutoSnd.Checked = False
Textl.ForeColor = QBColor (1l5)

66

PRI

P L

P

P

add packet framing characters
reset N

set TX flag

clear TX try counter

clear TX timeout counter

manage textbox memory

else don’t echo to the screen

if TX timeout zero
increment TX try counter
if TX try count 1

send packet

set 0.8 second timeout

for try counts 2 through 6
send packet

load random TX timeout count
else if past 6th try
manage textbox memory

put cursor at end of text
show NAK

reset TX flag

clear TX counter

clear TX timeout counter
clear TX packet string
clear RPkt$

else if TX timeout counter not 0
decrement it one count

if Pkt$ not null
send packet

if TXFlag not set

use Temp$ for local display
manage textbox memory

put cursor at end of text

add message to textbox

add packet framing to message
set ACK flag

clear TX try counter

clear TX timeout counter

send ACK back

manage textbox memory
clear TX textbox
put cursor at end of text

manage textbox memory
clear RX textbox
put cursor at end of text

close com port
done!

toggle AutoSend flag
if flag reset
uncheck AutoSend
white characters

[FRIF M.

Else
mnuAutoSnd.Checked = True
Textl.ForeColor = QBColor (10)
End If
End Sub

Private Sub mnuClear Click()
Textl.Text = -
Textl.SelStart = Len (Textl.Text)
Text2.Text = 7
Text2.SelStart = Len (Text2.Text)

End Sub

Private Sub mnuExit Click()
MSComml.PortOpen = False
End

End Sub

6 Revisions and Disclaimers

' else
check AutoSend
green characters

clear TX textbox
put cursor at end of text
clear RX textbox
put cursor at end of text

‘ close com port
done!

There are several improvements in the example software in this revision. The RF data
rate in both link layer protocol examples has been increased from 1200 to 2000 bps, and
the packet retry back off interval in DK200A.ASM has been better randomized. The
V110T30C host terminal program now supports multi-packet messages and both host ter-
minal programs provide better Windows efficiency. Component values in Figure 4.2 have
been adjusted to match the higher RF data rate.

The information in this design guide is for tutorial purposes only. Any software devel-
oped using the information provided in this guide should be thoroughly tested before use.
No representation is made that the software techniques and example code documented in
this guide will work in any specific application. Please refer to the Virtual Wire® Devel-
opment Kit Software License and Warranty for additional information.

RFM and Virtual Wire are registered trademarks of RF Monolithics, Inc. MS-DOS, QuickBASIC, Visual
Basic and Windows are registered trademarks of Microsoft Corporation. Keyloq is a trademark of Micro-

chip, Inc.

file: tr_swg19.vp, 2002.08.07

[FRIF M.

67

